Advertisement

Foundations of Physics

, Volume 13, Issue 12, pp 1221–1229 | Cite as

Problems of synchronization in special relativity and possible links with stochastic electrodynamics

  • G. Cavalleri
  • G. Spinelli
Article

Abstract

The Mansouri-Sexl and Sjödin point of view on clock synchronization in special relativity is maintained against various criticisms, taking into account also the recent point of view of stochastic electrodynamics. Light speed invariance is also discussed in an intuitive way.

Keywords

Special Relativity Clock Synchronization Light Speed Stochastic Electrodynamic Recent Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Mansouri and R. U. Sexl,Gen. Relativ. Gravit. 8, 497, 515, 809 (1977).Google Scholar
  2. 2.
    B. Ellis and P. Bowman,Philos. Sci. 34, 116 (1867).Google Scholar
  3. 3.
    H. Reichenbach,The Philosophy of Space and Timr (Dover, New York, 1958).Google Scholar
  4. 4.
    A. Grünbaum,Philosophical Problems of Space and Time (Reidel, Dordrecht, 1973), 2nd. edn.Google Scholar
  5. 5.
    Yu. B. Molchanov,Time in Classical and Relativistic Physics (Zuame, Moscow, 1969) (in Russian).Google Scholar
  6. 6.
    T. S. Sjödin,Nuovo Cimento B 51, 229 (1979).Google Scholar
  7. 7.
    R. Atkins,Phys. Lett. A 80, 243 (1980).Google Scholar
  8. 8.
    A. Brillet and J. L. Hall,Phys. Rev. Lett. 42, 549 (1979).Google Scholar
  9. 9.
    J. G. Vargas,Rev. Colomb. Fis. 14, 79, 91 (1980).Google Scholar
  10. 10.
    F. R. Tangherlini,Suppl. Nuovo Cimento 20, 1 (1961).Google Scholar
  11. 11.
    S. Marinov,Found. Phys. 11, 115 (1981); T. S. Sjödin and M. F. Podlaha,J. Phys. A, to be published.Google Scholar
  12. 12.
    M. Surdin,Ann. Inst. Henri Poincaré 15, 203 (1971).Google Scholar
  13. 13.
    T. M. Boyer,Phys. Rev. D 11, 809 (1975).Google Scholar
  14. 14.
    L. de la Peña-Auerbach aand A. M. Cetto,J. Math. Phys. 20, 469 (1979).Google Scholar
  15. 15.
    G. Cavalleri, to be published.Google Scholar
  16. 16.
    G. Cavalleri, to be published.Google Scholar
  17. 17.
    A. Rueda,Nuovo Cimento A 48, 155 (1978).Google Scholar
  18. 18.
    G. Cavalleri,Phys. Rev. D 23, 363 (1981).Google Scholar
  19. 19.
    S. Marinov,Eppur si Muove (Centre Belge de Documentation Scientifique, Bruxelles, 1977; East-West, Graz, 1981);Found. Phys. 9, 445 (1979).Google Scholar
  20. 20.
    J. G. Vargas,Lett. Nuovo Cimento 28, 289 (1980).Google Scholar
  21. 21.
    T. Chang,J. Phys. A 13, L207 (1980).Google Scholar
  22. 22.
    S. Marinov,Czech. J. Phys. B 24, 965 (1974).Google Scholar
  23. 23.
    M. C. Duffy,Ind. J. Phys. 27, 1 (1979).Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • G. Cavalleri
    • 1
  • G. Spinelli
    • 2
  1. 1.Università CattolicaBresciaItaly
  2. 2.Dipartimento di Matematica del Politecnico di MilanoMilanoItaly

Personalised recommendations