Journal of Superconductivity

, Volume 8, Issue 6, pp 759–764 | Cite as

Resonant Rutherford backscattering. Study ofa-axis YBaCuO films with very high crystallinity

  • C. C. Chin
  • T. Morishita
Regular Articles


Hybrid sputtering and the conventional dc-template sputtering methods were used to deposit highly crystallinea-axis films. The oxygen contents and disorder of the films were measured by the resonant Rutherford backscattering. The oxygen content of the films deposited by the hybrid sputtering depend on the deposition temperature. Films deposited at a low temperature have low oxygen content. The poor superconducting properties of these films may be due to the oxygen deficiency. The stoichiometry of the films deposited by the dc-template sputtering method was found to depend on the microstructure of the template. The disorder at the Ba and O sublattices of these highly crystallinea-axis films are uncorrelated.

Key words

a-axis YBCO Rutherford backscattering sputtered films 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Ito, S. Okayama, N. Homma, A. Qishi, and T. Morishita,Appl. Phys. Lett. 62, 312–314 (1993).Google Scholar
  2. 2.
    A. Inam, C. T. Rogers, R. Ramesh, K. Remschnig, L. Farrow, D. Hart, T. Venkatesan, and B. Wilkins,Appl. Phys. Lett. 57, 2484 (1990).Google Scholar
  3. 3.
    S. Mahajan, W. Ito, Y. Yoshida, and T. Morishita,Physica C 213, 445 (1993).Google Scholar
  4. 4.
    E. Sodtke and H. Munder,Appl. Phys. Lett. 60, 1630 (1992).Google Scholar
  5. 5.
    W. K. Chu, J. W. Mayer, and Nicolet Marc-A,Backscattering Spectrometry (Academic Press, Boston. 1978).Google Scholar
  6. 6.
    J. R. Cameron,Phys. Rev. 90, 839 (1953).Google Scholar
  7. 7.
    J. A. Leavitt, L. C. McIntyre, Jr., M. D. Ashbaugh, J. G. Oder, Z. Lin, and B. Dezfouly-Arjomandy,Nucl. Instrum. Methods Phys. Res. B44, 260–265 (1990).Google Scholar
  8. 8.
    J. Saarilahti and E. Rauhala,Nucl. Instrum. Methods Phys. Res. B46, 734–738 (1992).Google Scholar
  9. 9.
    J. G. Wen, S. Mahajan, T. Morishita, and Koshizukan,Appl. Phys. Lett. 64, 3334 (1994).Google Scholar
  10. 10.
    J. G. Wen, private communication.Google Scholar
  11. 11.
    R. J. Cava, A. W. Hewat, E. A. Hewat, B. Batlogg, M. Marezio, K. M. Rabe, Krajewski, W. F. Peck, and L. W. Rupp,Physica C 165, 419–433 (1990).Google Scholar
  12. 12.
    P. Bordet, C. Chailout, J. J. Capponi, J. Chenavas, and M. Marezio,Nature 327, 687 (1987).Google Scholar
  13. 13.
    J. F. Hamet, B. Mercey, M. Hervieu, G. Poullain, and B. Raveau,Physica C 198, 293–302 (1992).Google Scholar
  14. 14.
    L. C. Feldman and J. W. Rodgers,J. Appl. Phys. 41, 3776 (1970).Google Scholar
  15. 15.
    M. Watamori, F. Shoji, H. Itozaki, T. Hanawa, and K. Oura,Jpn. J. Appl. Phys. 29, 252 (1990).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • C. C. Chin
    • 1
  • T. Morishita
    • 1
  1. 1.Superconductivity Research LaboratoryISTECTokyoJapan

Personalised recommendations