Foundations of Physics

, Volume 11, Issue 7–8, pp 529–546 | Cite as

Nonlocality in quantum theory understood in terms of Einstein's nonlinear field approach

  • D. Bohm
  • B. J. Hiley


We discuss Einstein's ideas on the need for a theory that is both objective and local and also his suggestion for realizing such a theory through nonlinear field equations. We go on to analyze the nonlocality implied by the quantum theory, especially in terms of the experiment of Einstein, Podolsky, and Rosen. We then suggest an objective local field model along Einstein's lines, which might explain quantum nonlocality as a coordination of the properties of pulse-like solutions of the nonlinear equations that would represent particles. Finally, we discuss the implications of our model for Bell's inequality.


Rosen Quantum Theory Nonlinear Equation Field Equation Local Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Goldsmith, A. MacKay, and J. Woudhuysen,Einstein, The First Hundred Years (Pergamon, Oxford, 1980).Google Scholar
  2. 2.
    P. A. Schilpp,Albert Einstein: Philosopher Scientist (Harper Torchbooks, New York, 1959).Google Scholar
  3. 3.
    D. Bohm,Found. Phys. 1, 359 (1971);Found. Phys. 3, 139 (1973);Wholeness and the Implicate Order (Routledge and Kegan Paul, London, 1980); F. A. M. Frescura and B. J. Hiley,Found. Phys. 10, 7 (1980).Google Scholar
  4. 4.
    P. A. M. Dirac,Proc. Roy. Soc. A.167, 148 (1938);Proc. Roy. Soc. A.180, 1 (1942).Google Scholar
  5. 5.
    The Born-Einstein Letters (Correspondence Between Albert Einstein and Max and Hedwig Born (1916–1955) with Commentaries by Max Born), I. Born, ed. (MacMillan, London, 1971).Google Scholar
  6. 6.
    A. Einstein, B. Podolsky, and N. Rosen,Phys. Rev. 47, 777 (1935).Google Scholar
  7. 7.
    C. S. Wu and I. Shaknov,Phys. Rev. 77, 136 (1950).Google Scholar
  8. 8.
    D. Bohm and Y. Aharanov,Phys. Rev. 108, 1070 (1957).Google Scholar
  9. 9.
    W. H. Furry,Phys. Rev. 49, 393 (1936).Google Scholar
  10. 10.
    J. S. Bell,Physics 1, 195 (1964).Google Scholar
  11. 11.
    M. Paty,Quantum Mechanics, a Half-century Later, J. L. Lopes and M. Pary, eds. (Reidel, Dordrecht, Holland, 1977); J. F. Clauser and A. Shimony,Rep. Prog. Phys. 41, 1881 (1978).Google Scholar
  12. 12.
    A. R. Wilson, J. Lowe, and D. K. Butt,J. Phys. G. Nucl. Phys. 9, 613 (1976).Google Scholar
  13. 13.
    R. Thom,Structural Stability and Morphogenesis, (Benjamin, London, 1973).Google Scholar
  14. 14.
    J. A. Wheeler and R. Feynman,Rev. Mod. Phys. 21, 425 (1949).Google Scholar
  15. 15.
    A. Aspect,Phys. Lett. 54A, 117 (1975);Phys. Rev. 14D, 1944 (1976).Google Scholar
  16. 16.
    H. P. Stapp,Phys. Rev. 3D, 1303 (171).Google Scholar
  17. 17.
    D. Bohm,Phys. Rev. 85, 166 (1952).Google Scholar
  18. 18.
    C. Philippidis, C. Dewdney, and B. J. Hiley,Nuovo Cimento 52B, 15 (1979).Google Scholar
  19. 19.
    F. Selleri and G. Tarozzi,Epistemological Letters, p. 1 (Institut de la Methode, Oct. 1978).Google Scholar
  20. 20.
    E. P. Wigner, inThe Scientist Speculates, I. J. Good, ed. (Putnam, New York, 1965).Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • D. Bohm
    • 1
  • B. J. Hiley
    • 1
  1. 1.Department of Physics, Birkbeck CollegeUniversity of LondonLondonEngland

Personalised recommendations