Effects of hydrogen on stress cracking in unheated thermal powder station pipes

  • A. B. Vainman
  • R. K. Melékhov
  • M. O. Syaber
  • O. D. Smiyan
  • A. V. Vasilik


Reasons are examined for damage to unheated bends in thermal power station pipes made of steel 20 and steel 12Kh1MF. Corrosion and thermal fatigue are accompanied by creep and by a substantial contribution from the development of brittle cracks on account of hydrogen occluded by the steel from the two-phase or one-phase medium acting on the inner surfaces of the tubes.


Hydrogen Fatigue Brittle Thermal Power Substantial Contribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    P. A. Akol'zin, Metal Corrosion and Protection in Thermal Power Plant [in Russian], Énergoizdat, Moscow (1982).Google Scholar
  2. 2.
    A. B. Vainman, O. D. Smiyan, S. I. Girnyi, et al., “Features of brittle damage and hydrogenation in high-pressure boiler tubes,” Fiz.-khim., Mekh. Mater., No. 4, 83–86 (1987).Google Scholar
  3. 3.
    M. B. Balakhovskaya and N. A. Khusainova, “Reliability improvement and working-life evaluation for bends in unheated feed tubes and steam pipes,” Trudy VTI, Ural. Fil., Issue 29, 20–23 (1981).Google Scholar
  4. 4.
    I. I. Mints and S. A. Zakomaldina, The causes of failure in bends in unheated boiler tubes of steel 20 and affected in stretched zones,” Teploénergetika, No. 5, 51–53 (1984).Google Scholar
  5. 5.
    V. A. Nakhalov, “Damage to bends in pipes at power stations in Germany,” Énergokhozyaistvo za Rubezhom No. 2, 14–18 (1986).Google Scholar
  6. 6.
    G. A. Tulyakov, Thermal Fatigue in Power Engineering [in Russian], Mashinostroenie, Moscow (1978).Google Scholar
  7. 7.
    I. V. Shurova and R. Kh. Baraz, “Types of damage to bends in water-carrying tubes made of steel 20,” Trudy VTI, Ural. Fil., Issue 29, 121–128 (1981).Google Scholar
  8. 8.
    A. B. Vainman, Preventing Corrosion in High-Pressure Drum Boilers [in Russian], Énergoatomizdat, Moscow (1985).Google Scholar
  9. 9.
    M. B. Balakhovskaya and L. V. Nadtsyna, “The role of hydrogen in fatigue damage to components of power equipment at medium temperatures,” Fiz.-khim. Mekh. Mater., No. 1, 26–28 (1981).Google Scholar
  10. 10.
    Yu. I. Archakov, Hydrogen Corrosion of Steel [in Russian], Metallurgiya, Moscow (1985).Google Scholar
  11. 11.
    B. A. Kolachev, Metal Hydrogen Embrittlement [in Russian], Metallurgiya, Moscow (1985).Google Scholar
  12. 12.
    A. B. Vainman, R. K. Melekhov, O. D. Smiyan, et al., “The effects of hydrogen on brittle failure in steam superheaters for high-pressure boilers,” Énergetika, No. 3, 11–14 (1988).Google Scholar
  13. 13.
    O. D. Smiyan, “Hydrogen and slow failure in high-tensile steel,” in: Diagnosing and Forecasting Failure in Welded Structures [in Russian], Issue 5 (1987), pp. 26–29.Google Scholar
  14. 14.
    M. A. Solomakha and S. N. Mokobotskii, “Reliability in bends in steam pipes made of 12Kh1MF steel,” Élektr. Stantsii, No. 4, 15–19 (1988).Google Scholar
  15. 15.
    R. P. Skelton (ed.), High-Temperature Fatigue [Russian translation], Metallurgiya, Moscow (1988).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • A. B. Vainman
    • 1
  • R. K. Melékhov
    • 1
  • M. O. Syaber
    • 1
  • O. D. Smiyan
    • 1
  • A. V. Vasilik
    • 1
  1. 1.Karpenko Physicomechanics InstituteAcademy of Sciences of the Ukrainian SSRL'vov

Personalised recommendations