Advertisement

Journal of Superconductivity

, Volume 8, Issue 4, pp 441–444 | Cite as

Energy spectrum in the high T c oxides

  • V. Z. Kresin
  • S. A. Wolf
  • S. D. Adrian
  • M. E. Reeves
  • Yu. N. Ovchinnikov
Article

Abstract

The energy gap structure of the cuprates depends strongly on levels of doping. The stoichiometric compoundYBa2Cu3O7 displays a peculiar two-gap structure. Oxygen depletion is accompanied by the transition to the gapless state, and this is manifested in various transport, electromagnetic, etc. properties of the material. The temperature dependence of the penetration depth correlates with oxygen content and is characterized by various power laws in an oxygen depleted sample. In other cuprates, overdoping leads to gaplessness and a peculiar dependence of Hc2.

Key words

Gaplessness magnetic impurities penetration depth Hc2 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. a)
    V.Kresin and S. Wolf,Phys.Rev. B41, 4278 (1990)Google Scholar
  2. 1. b)
    V.Kresin and S. Wolf,Physica C169, 476 (1990)Google Scholar
  3. 1. c)
    V.Kresin and S. Wolf,Phys. Rev. B46, 6458 (1992).Google Scholar
  4. 2.
    J. Geerk et al., Z. Phys. B73, 329 (1988).Google Scholar
  5. 3.
    M.Reeves et al.,Phys. Rev. B47, 6065 (1993).Google Scholar
  6. 4.
    W. McMillan,Phys. Rev. 175, 537 (1968).Google Scholar
  7. 5.
    H.Suhl et al.,Phys. Rev. Lett. 3, 552 (1959); B.Geilikman et al.,Sov. Phys.-Solid State 9, 642 (1967); V.Kresin,J. Low Temp. Phys. 11, (1973) 519.Google Scholar
  8. 7.
    A.Abrikosov and L.Gor'kov,Sov. Phys.-JETP 12, 1243 (1961).Google Scholar
  9. 8.
    K.Maki, inSuperconductivity, ed. R. Parks, (Marcel Dekker, NY 1969) p.1035; P.De Gennes,Superconductivity of Metals and Alloys, (W. Benjamin, NY 1966), Ch. VIII.Google Scholar
  10. 9.
    V.Kresin and S.Wolf,Phys. Rev. B51, 1229 (1995).Google Scholar
  11. 10.
    S.D. Adrian et al. Phys. Rev. B51, 6800 (1995).Google Scholar
  12. 11.
    S.Anlage et al.,Phys. Rev. B44, 9764 (1991).Google Scholar
  13. 12.
    N.Klein et al.,Phys. Rev. Lett. 71, 3355 (1993).Google Scholar
  14. 13.
    W. Hardy et al.,Phys. Rev. Lett. 70, 3999 (1993).Google Scholar
  15. 14.
    Jian Mao et al.,51, Phys. Rev. B, 3316 (1995).Google Scholar
  16. 15.
    M.Beasley,Physica C209, 43 (1993).Google Scholar
  17. 16.
    Zhengxiang Ma et al.,Phys. Rev. Lett. 71, 781 (1993).Google Scholar
  18. 17.
    A. Abrikosov and I. Khalatnikov,Adv. Phys. 8, 45 (1959).Google Scholar
  19. 18.
    E.Skelton et al.,Science 263, 1416 (1994).Google Scholar
  20. 19.
    A. Mackenzie et al., Phys. Rev. Lett.71, 1938 (1993); M. Osofsky et al., Phys. Rev. Lett.71, 2315 (1993).Google Scholar
  21. 20. a)
    J. Wade et al., J. of Supercon.7, 261 (1994)Google Scholar
  22. 20. b)
    C. Niedermayer et al., J. of Supercon.7, 165 (1994)Google Scholar
  23. 20. c)
    M. Teplov et al., this issue.Google Scholar
  24. 21.
    Yu. Ovchinnikov and V. Kresin, this issue.Google Scholar
  25. 22.
    C.C. Kim et al.,Phys. Rev. B50, 13778 (1994).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • V. Z. Kresin
    • 1
  • S. A. Wolf
    • 2
  • S. D. Adrian
    • 3
  • M. E. Reeves
    • 2
    • 3
  • Yu. N. Ovchinnikov
    • 4
  1. 1.Lawrence Berkeley LaboratoryUniversity of CaliforniaBerkeley
  2. 2.Naval Research LaboratoryWashington, DC
  3. 3.George Washington UniversityWashington, DC
  4. 4.Landau Institute for Theoretical PhysicsMoscowRussia

Personalised recommendations