Advertisement

Origin and development of plastic strains in the neighborhood of an acute-angled rigid inclusion

  • L. T. Berezhnitskii
  • N. M. Kundrat
Article

Keywords

Plastic Strain Rigid Inclusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    P. M. Vitvitskii, V. V. Panasyuk, and S. Ya. Yarema, “Plastic strains in the neighborhood of cracks and fracture criteria,” Probl. Prochn., No. 2, 3–18 (1973).Google Scholar
  2. 2.
    V. Z. Parton and E. M. Morozov, Mechanics of Elastoplastic Fracture [in Russian], Nauka, Moscow (1974).Google Scholar
  3. 3.
    G. P. Cherepanov, Mechanics of Brittle Fracture [in Russian], Nauka, Moscow (1974).Google Scholar
  4. 4.
    L. T. Berezhnitskii and R. S. Gromyak, “On an estimate of the limit state of a matrix in the neighborhood of a pointed rigid inclusion,” Fiz.-Khim. Mekh. Mater., No. 2, 39–47 (1977).Google Scholar
  5. 5.
    V. V. Panasyuk, L. T. Berezhnitskii, and I. I. Trush, “Stress distribution around defects of the type of rigid acute-angled inclusions,” Probl. Prochn., No. 7, 3–9 (1972).Google Scholar
  6. 6.
    R. S. Gromyak, “On the plasticity zone in the neighborhood of the apex of a rigid inclusion under antiplane deformation,” Fiz.-Khim. Mekh. Mater., No. 4, 124–126 (1979).Google Scholar
  7. 7.
    J. A. H. Hult and F. A. McClintock, “Elastic-plastic stress and strain distributions around sharp notches under repeated shear,” Ninth Intern. Congr. Appl. Mech., Brussels,8, 51–58 (1957).Google Scholar
  8. 8.
    G. P. Cherepanov, “Elastoplastic problem under antiplane deformation conditions,” Prikl. Mat. Mekh.,26, No. 4, 697–708 (1962).Google Scholar
  9. 9.
    R. S. Gromyak and M. N. Senyuk, “Determination of the plastic zone boundaries in the neighborhood of a rigid inclusion under tension of a thin incompressible plate,” Mater. Ninth Confer. Young Scient. [in Russian], Fiz.-Mekh. Inst. Akad. Nauk Ukr. SSR, L'vov (1979), pp. 33–35.Google Scholar
  10. 10.
    L. T. Berezhnitskii and M. N. Senyuk, “Application of the method of local variations to determine plasticity zones around defects,” Abstracts of Reports, Third Republ. Conf. “Computer Math, in Modern Sci.-Tech. Progress” [in Russian], Kiev (1982), pp. 113–114.Google Scholar
  11. 11.
    P. M. Vitvitskii and V. A. Kriven', “Antiplane elastoplastic strain of a body with a thin rigid inclusion,” Dop. Akad. Nauk UkrSSR, No. 2, 104–107 (1979).Google Scholar
  12. 12.
    L. T. Berezhnitskii, M. V. Delyavskii, and V. V. Panasyuk, Bending of Thin Plates with Crack-Type Defects [in Russian], Naukova Dumka, Kiev (1979).Google Scholar
  13. 13.
    G. P. Cherepanov, “Plastic lines of discontinuity at the end of a crack,” Prikl. Mat. Mekh.,40, No. 4, 720–728 (1976).Google Scholar
  14. 14.
    V. D. Kuliev, Yu. N. Rabotnov, and G. P. Cherepanov, “On crack retardation on the interface of different elastic media,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 4, 120–128 (1978).Google Scholar
  15. 15.
    B. A. Kudryavtsev, V. Z. Parton, Yu. A. Peskov, and G. P. Cherepanov, “On the local plastic zone near the end of a slit (plate strain),” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 5, 132–138 (1970).Google Scholar
  16. 16.
    Ya. S. Uflyand, Integral Transforms in Problems of Elasticity Theory [in Russian], Nauka, Leningrad (1967).Google Scholar
  17. 17.
    F. D. Gakhov, Boundary-Value Problems [in Russian], Nauka, Moscow (1977).Google Scholar
  18. 18.
    B. Noble, Wiener-Hopf Method [Russian translation], IL, Moscow (1962).Google Scholar
  19. 19.
    N. I. Muskhelishvili, Certain Fundamental Problems of the Mathematical Theory of Elasticity [in Russian], Nauka, Moscow (1966).Google Scholar
  20. 20.
    L. T. Berezhnitskii, V. V. Panasyuk, and I. I. Trush, “Stress intensity coefficients around rigid acute-angled inclusions,” Probl. Prochn., No. 7, 3–7 (1973).Google Scholar
  21. 21.
    R. Piessens and I. Mertens, “The automatic evaluation of Lauchy principal-value integrals,” Angewandte Informatik, No. 1, 31–35 (1976).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • L. T. Berezhnitskii
    • 1
  • N. M. Kundrat
    • 1
  1. 1.G. V. Karpenko Physicomechanical InstituteAcademy of Sciences of the Ukrainian SSRL'vov

Personalised recommendations