Training-overtraining: influence of a defined increase in training volume vs training intensity on performance, catecholamines and some metabolic parameters in experienced middle- and long-distance runners

  • M. Lehmann
  • P. Baumgartl
  • C. Wiesenack
  • A. Seidel
  • H. Baumann
  • S. Fischer
  • U. Spöri
  • G. Gendrisch
  • R. Kaminski
  • J. Keul
Article

Summary

The influence of an increase in training volume (ITV; February 1989) vs intensity (ITI; February 1990) on performance, catecholamines, energy metabolism and serum lipids was examined in two studies on eight, and nine experienced middle- or long-distance runners; seven participated in both studies. During ITV, mean training volume was doubled from 85.9 km · week−1 (pretrial phase) to 174.6 km within 3 weeks. Some 96%–98% of the training was performed at 67 (SD 8)% of maximal performance. During ITI, speed-endurance, high-speed and interval runs increased within 3 weeks from 9 km · week−1 (pretrial phase) to 22.7 km · week−1 and the total training distance from 61.6 to 84.7 km · week−1. The ITV resulted in stagnation of running velocity at 4 mmol lactate concentration and a decrease in total running distance in the increment test. Heart rate, energy metabolic parameters, nocturnal urinary catecholamine excretion, low density, very low density lipoprotein-cholesterol and triglyceride concentrations decreased significantly; the exercise-related catecholamine plasma concentrations increased at an identical exercise intensity. The ITI produced an improvement in running velocity at 4 mmol lactate concentration and in total running distance in the increment test; heart rate, energy metabolic parameters, nocturnal catecholamine excretion, and serum lipids remained nearly constant, and the exercise-related plasma catecholamine concentrations decreased at an identical exercise intensity. The ITV-related changes in metabolism and catecholamines may have indicated an exhaustion syndrome in the majority of the athletes examined but this hypothesis has to be proven by future experimental studies.

Key words

Training Overtraining Catecholamines Lipids Energy metabolism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barron GL, Noakes TD, Levy W, Smith C, Millar RP (1985) Hypothalamic dysfunction in overtrained athletes. J Clin Endocrinol Metab 60: 803–806Google Scholar
  2. Berg A, Jakob E, Lehmann M, Dickhuth HH, Huber G, Keul J (1990) Aktuelle Aspekte der modernen Ergometrie. Pneumologie 44: 2–13Google Scholar
  3. Booth F (1977) Effect of endurance exercise on cytochrome c turnover in skeletal muscle. Ann NY Acad Sci 301: 431–439Google Scholar
  4. Braumann KM, Maassen N, Busse M (1988) Die Problematik der Interpretation trainings-begleitender Laktatmessungen. Dtsch Z Sportmed 39:365–368Google Scholar
  5. Brodde ED, Daul A, O'Hara N (1984) β-adrenoreceptor changes in human lymphocytes, induced by dynamic exercise. Naunyn Schmiedebergs Arch Pharmacol 325:190–192Google Scholar
  6. Da Prada M, Zürcher G (1976) Simultaneous radioenzymatic determination of plasma and tissue adrenaline, noradrenaline and dopamine within the fentomole range. Life Sci 19:1161–1174Google Scholar
  7. Dickhuth HH, Wohlfahrt B, Hildebrand D, Rokitzki L, Huonker M, Keul J (1988) Jahreszyklische Schwankungen der Ausdauerleistungsfähigkeit von hochtrainierten Mittelstreckenläufern. Dtsch Z Sportmed 39:346–353Google Scholar
  8. Ekblom B, Kilbom A, Soltysiak J (1973) Training, bradycardia and autonomic nervous system. Scand J Clin Lab Invest 32:252–256Google Scholar
  9. Galbo H, Christensen NJ, Mikines KJ, Sonne B, Hilsted J, Hagen C, Fahrenbug J (1981) The effect of fasting on the hormonal response to graded exercise. J Clin Endocrinol Metab 52:1106–1112Google Scholar
  10. Gendrisch G (1989) Vergleichende Untersuchungen zur individuellen anaeroben Schwelle von hochtrainierten Mittel- und Langstreckenläufern im Feld- und Labortest. Inaugural-Dissertation. Medical Faculty of the University of Freiburg, Freiburg, FRGGoogle Scholar
  11. Guezennec Y, Leger L, Lhoste F, Aymond M, Pesquies PC (1986) Hormone and metabolic response to weight lifting training sessions. Int J Sports Med 7: 100–105Google Scholar
  12. Hagberg JM, Hickson RC, McLane JA, Ehsani AA, Winder WW (1979) Disappearance of norepinephrine from the circulation following strenuous exercise. J Appl Physiol 47:1311–1314Google Scholar
  13. Hartley LH, Mason JW, Hogan RP, Jones LG, Kotchen TA, Mougey EH, Wherry FE, Pennington LL, Ricketts PT (1972) Multiple hormonal response to graded exercise in relation to physical training. J Appl Physiol 33:602–606Google Scholar
  14. Hohorst HJ (1962) L-(+)-Laktat. Bestimmung mit Laktatdehydrogenase und DPN. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse. Verlag Chemie, Weinheim, pp 266–277Google Scholar
  15. Hollmann W, Hettinger T (1980) Sportmedizin, Arbeits- und Trainingsgrundlagen. Schattauer Verlag Stuttgart, pp 549–552Google Scholar
  16. Israel S (1976) Zur Problematik des Übertrainings aus internistischer und leistungsphysiologischer Sicht. Med Sport 16:1–12Google Scholar
  17. Keul J, Lehmann M, Dickhuth HH, Berg A (1980) Vergleiche von Herzvolumen, nomographisch ermittelter Sauerstoffaufnahme und Wettkampfleistung bei Ausdauersportarten. Dtsch Z Sportmed 31:148–154Google Scholar
  18. Kindermann W (1986) Das Übertraining — Ausdruck einer vegetativen Fehlsteuerung. Dtsch Z Sportmed 37:138–145Google Scholar
  19. Kniffki KD, Mense S, Schmidt RF (1981) Muscle receptors with fine afferent fibers which may evoke circulatory reflexes. Circ Res 48 [Suppl I]:25–31Google Scholar
  20. Kuipers H, Keizer HA (1988) Overtraining in elite athletes. Sports Med 6:79–92Google Scholar
  21. Lehmann M (1989) Trainierbarkeit des Herz-Kreislauf-Systems bei Gesunden und Herzkranken. In: Hopf R, Kaltenbach M (eds) Bewegungstherapie für Herzkranke. PMI Verlag, Frankfurt, pp 27–38Google Scholar
  22. Lehmann M, Keul J (1985) Capillary-venous differences of free plasma catecholamines at rest and during graded exercise. Eur J Appl Physiol 54:502–505Google Scholar
  23. Lehmann M, Keul J (1986) Free plasma catecholamines, heart rates, lactate levels, and oxygen uptake in competition weight lifters, cyclists and untrained control subjects. Int J Sports Med 7:18–21Google Scholar
  24. Lehmann M, Dickhuth HH, Schmid P, Porzig H, Keul J (1984) Plasma catecholamines, β-adrenergic receptors, and isoproterenol sensitivity in endurance trained and non-endurance trained volunteers. Eur J Appl Physiol 52:362–369Google Scholar
  25. Mader A, Liesen H, Heck H, Philippi H, Rost R, Schürch P, Hollmann W (1976) Beurteilung der sportartspezifischen Ausdauerleistungsfähigkeit im Labor. Sportarzt Sportmed 27:80–88 und 109–112Google Scholar
  26. Péronnet F, Cléroux J, Perrault H, Cousineau D, Champlain J, Nadeau R (1981) Plasma norepinephrine response to exercise before and after training in humans. J Appl Physiol 51: 812–815Google Scholar
  27. Sachs L (1978) Angewandte Statistik. Springer, Berlin Heidelberg New York, pp 230–235Google Scholar
  28. Slein MW (1962) D-Glucose. Bestimmung mit Hexokinase und Glucose-6-Phosphat-Dehydrogenase. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse. Verlag Chemie, Weinheim, pp 117–123Google Scholar
  29. Tohmeh JF, Cryer PE (1980) Biphasic adrenergic modulation of β-adrenergic receptors in man. J Clin Invest 65:836–840Google Scholar
  30. Trap-Jansen J, Christensen NJ, Clausen JP, Rasmussen B, Klausen K (1973) Arterial noradrenaline and circulatory adjustment to strenuous exercise with trained and non-trained muscle groups. In: Selinger V (ed) Physical Fitness. Charles University Press, Prague, pp 414–418Google Scholar
  31. Wallin BG (1981) Relationship between sympathetic outflow to muscles, heart rate and plasma norepinephrine in man. In: Delius W, Gerlach E, Grobecker H, Kübler W (eds) Catecholamines and the heart. Springer, Berlin Heidelberg New York, pp 11–17Google Scholar
  32. Weicker H (1988) Purinnukleotidzyklus und muskuläre Ammoniakproduktion. Dtsch Z Sportmed 39:172–178Google Scholar
  33. Wieland H, Seidel D (1978) Fortschritte in der Analytik des Lipoproteinmusters. Inn Med 5:290–300Google Scholar
  34. Wilmore JH, Davis JA, O'Brien RS, Vodak PA, Walder TR, Amsterdam EA (1980) Physiological alterations consequent to 20-week conditioning programs of bicycling, tennis and jogging. Med Sci Sports Exerc 12:1–8Google Scholar
  35. Winder WW, Hickson RC, Hagberg JM, Ehsani AA, McLane JA (1979) Training induced changes in hormonal and metabolic responses to submaximal exercise. J Appl Physiol 46:766–771Google Scholar
  36. Yamaguchi N, de Champlain J, Nadeau R (1975) Correlation between the response of the heart to sympathetic stimulation and the release of endogenous catecholamines into the coronary sinus of the dog. Circ Res 36:662–668Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • M. Lehmann
    • 1
  • P. Baumgartl
    • 1
  • C. Wiesenack
    • 1
  • A. Seidel
    • 1
  • H. Baumann
    • 1
  • S. Fischer
    • 1
  • U. Spöri
    • 1
  • G. Gendrisch
    • 1
  • R. Kaminski
    • 1
  • J. Keul
    • 1
  1. 1.Department of Sports and Performance MedicineUniversity Medical Hospital Freiburg i. BreisgauFreiburgFederal Republic of Germany

Personalised recommendations