Pharmacy World and Science

, Volume 18, Issue 4, pp 121–129 | Cite as

Oxidative stress in malaria; implications for prevention and therapy

  • Postma N S 
  • Zuidema J 
  • Mommérs E C 
  • Eling W M C 


Malaria affects world-wide more than 200 million people, of which 1–2 million die every year. New drugs and treatment strategies are needed to face the rapidly increasing problems of drug resistance.

During a malaria infection, both host and parasite are under oxidative stress. Increased production levels of reactive oxygen species (ROS, e.g. superoxide anion and the hydroxyl radical) are produced by activated neutrophils in the host and during degradation of haemoglobin in the parasite.

The effects of ROS in malaria can be both beneficial and pathological, depending on the amount and place of production. Enhanced ROS production after the administration of pro-oxidants, which is directed against the intra-erythrocytic parasite, inhibits the infection bothin vitro andin vivo. However, ROS are also involved in pathological changes in host tissue like damage of the vascular endothelial lining during a malaria infection (cerebral malaria).

Pro-oxidants support the host defense against the parasite when working in or near the infected cell but potentially cause vascular damage when working on or near the vascular lining. Examples of pro-oxidants are found among xenobiotics and food components. Important new drugs belonging to the class of pro-oxidants are artemisinin and its derivatives. Anti-oxidants potentially counteract these agents.

Treatment with anti-oxidants or chelators of metals to prevent their catalytic function in the generation of ROS may prevent vascular pathology. In addition, the iron chelator desferrioxamine, exhibits an antiparasitic activity, because iron is also essential for the proliferation of the parasite.

Cytokines play an important role in ROS-related pathology of malaria, though their mechanism of action is not completely elucidated. This field might bring up new treatment concepts and drugs.

Drugs which prevent host pathology, such as the cerebral complications might be life saving.


Oxidative stress Reactive oxygen species Malaria Cerebral malaria Cytokines Pro-oxidants Anti-oxidants Artemisinin Desferrioxamine 

List of abbreviations and symbols


1,3-bis(2-chloroethyl)-1-nitrosourea (a GSH-R inhibitor)


butylated hydroxyanisole (a radical scavenger)


cerebral malaria


cluster of difference 36 (integral membrane glycoprotein)


desferrioxamine, deferoxamine, desferal (a chelator)


endothelial leukocyte adhesion molecule-1


glucose-6-phosphate dehydrogenase


glutathione (reduced)


glutathione peroxidase


glutathione reductase


glutathione (oxidised)


1-(2-chloroethyl)-3-(2-hydroxyethyl)-1-nitrosourea (a GSH-R inhibitor)


hexose monophosphate shunt


histidine-rich proteins


intercellular adhesion molecule-1


interceron-gamma (a cytokine)


interleukine-1 (a cytokine)


infected red blood cells


nicotinamide-adenine-dinucleotide phosphate (reduced)


superoxide radical


hydroxyl radical




parasitised erythrocytes


polyethylene glycol


Plasmodium falciparum erythrocyte major protein 1


polymorphonuclear cells


secondary radical


reactive oxygen species


superoxide dismutase


tumour necrosis factor (a cytokine)


vascular adhesion molecule-1


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wernsdorfer G, Wernsdorfer WH. Social and economic aspects of malaria and its control. In: Wernsdorfer WH, McGregor Sir I, eds. Malaria. Edinburgh: Churchill Livingstone, 1992;2(ch 47): 1421–71.Google Scholar
  2. 2.
    Cook, GC. Infection Today. Prevention and treatment of malaria. Lancet 1988;jan2/9:32–7.Google Scholar
  3. 3.
    Webster LTJr. Drugs used in the chemotherapy of protozoal infections. Malaria. In: Goodman Gilman A, Rall TW, Nies AS, Taylor P (eds) The pharmacological basis of therapeutics New York: Pergamon Press, 1990:ch 41;978–98.Google Scholar
  4. 4.
    Warrell DA, Molyneux ME, Beales PF (eds). Severe and complicated malaria. Trans Roy Soc Trop Med Hyg 1990;84(suppl 2):1–65.Google Scholar
  5. 5.
    Eling WMC, Sauerwein RW. Severe and cerebral malaria. Common or distinct pathophysiology? Rev Med Microbiology 1995;6(1):17–25.Google Scholar
  6. 6.
    Garnham P.C.C. Malaria parasites and other Haemosporidia. Oxford, Blackwell Scientific Publ., 1966:1–1114.Google Scholar
  7. 7.
    Gilbert DL (ed). Oxygen and Living Processes. An Interdisciplinary Approach. New York, Springer Verlag, 1981.Google Scholar
  8. 8.
    Saltman P. Oxidative stress: A Radical View. Semin in Hematol 1989;26(4):249–56.Google Scholar
  9. 9.
    Clark IA, Chaudhri G, Cowden WB. Some roles of free radicals in malaria. Review article. Free Radical Biol Med 1989;6:315–21.Google Scholar
  10. 10.
    Kharazmi A, Jepsen S, Andersen BJ. Generation of reactive oxygen radicals by human phagocytic cells activated byP. falciparum. Scand J Immunol 1987;25:335–41.Google Scholar
  11. 11.
    Jayshree RS, Ganguli NK, Dubey ML, Mohan K, Mahajan RC. Generation of reactive oxygen species by blood monocytes during acuteP. knowlesi infection in rhesus monkeys. APMIS 1993; 101:762–6.Google Scholar
  12. 12.
    Hunt NH, Stocker R. Oxidative stress and the redox status of malaria-infected erythrocytes. Blood Cells 1990;16:499–526.Google Scholar
  13. 13.
    Rice-Evans C, Bruckdorfer KR. Free radicals, lipoproteins and cardiovascular dysfunction. Molec Aspects Med 1992;13:1–111.Google Scholar
  14. 14.
    Halliwell B. Drug Antioxidant Effects: A Basis for Drug Selection. Drugs 1991;42(4):569–605.Google Scholar
  15. 15.
    Proctor PH, Reynolds ES. A Review: Free radicals and disease in man. Physiol Chem Phys Med NMR 1984;16:175–95.Google Scholar
  16. 16.
    Curnutte JT, Babior BM. Chronic granulomatous disease. Adv Hum Genet 1987;16:229–45.Google Scholar
  17. 17.
    Halliwell B, Gutteridge JMC. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol 1990a; 186:1–86.Google Scholar
  18. 18.
    Imlay JA, Linn S. DNA damage and oxygen radical toxicity. Science 1988;240:1302–9.Google Scholar
  19. 19.
    Esterbauer H, Striegl G, Puhl H, Rotheneder M. Continuous monitoring ofin vitro oxidation of human low density lipoprotein. Free Rad Res Comm 1989;6:67–75.Google Scholar
  20. 20.
    Frei B, stocker R, Ames B. Antioxidant defences and lipid peroxidation in human blood plasma. Proc Natl Acad Sci 1989;85:9748–52.Google Scholar
  21. 21.
    Aruoma OI, Halliwell B. Superoxide-dependent and ascorbate-dependent formation of hydroxyl radicals from hydrogen peroxide in the presence of iron. Biochem J 1987;241:273–8.Google Scholar
  22. 22.
    Gutteridge JMC, Stocks J. Caeruloplasmin: physiological and pathological perspectives. Crit Rev Clin Lab Sci 1981;14:257–329.Google Scholar
  23. 23.
    Etkin NL, Eaton JW. Malaria-induced erythrocyte oxidant sensitivity. In: Brewer GJ ed. Erythrocyte structure and function. New York;A.R. Liss 1975;219–34.Google Scholar
  24. 24.
    Nakornchai S, Anantavara S. Oxygen free radicals in malaria. In: Ong ASH, Packer L eds. Lipid-Soluble Antioxidants, Biochemistry and Clinical Applications. Basel: Birkhauser Verlag, 1993;355–62.Google Scholar
  25. 25.
    Atamna H, Ginburg H. Origin of reactive oxygen species in erythrocytes infected withP. falciparum. Mol Biochem Parasitol 1993;61:231–42.Google Scholar
  26. 26.
    Winterbourn CC. Reactions of superoxide with haemoglobin. In: Greenwald RA ed. CRC Handbook of methods for oxygen radical research. Boca Raton, FL CRC Press 1985;137–41.Google Scholar
  27. 27.
    Golenser J, Marva E, Har-EI R, Chevion M. Induction of oxidant stress by iron available in advanced forms ofP. falciparum. Free Radical Res Commun 1991;12–13:639–43.Google Scholar
  28. 28.
    VanderJagt DL, Hunsaker LA, Campos NM, Scaletti JV. Localisation and characterisation of haemoglobin-degrading aspartic proteinases from the malarial parasitePlasmodium falciparum. Biochim Biophys Acta 1992;1122:256–64.Google Scholar
  29. 29.
    Descamps-Latascha B, Lunel-Fabiani F, Karabinis A, Druilhe P. Generation of reactive oxygen species in whole blood from patients with acutefalciparum malaria. Parasite Immunol 1987;9:275–9.Google Scholar
  30. 30.
    Dubey ML, Rai SK, Ganguly NK, Kalra A, Verma SC, Mahajan RC. Generation of reactive oxygen species by blood monocytes in humanP. falciparum andP. vivax infections. APMIS 1991;99:210–2.Google Scholar
  31. 31.
    Trager W, Jensen JB. Human malaria parasites in continuous culture. Science 1976;193:673–5.Google Scholar
  32. 32.
    Orjih AU, Chevli R, Fitch CD. Toxic haeme in sickle cells: an explanation for death of malaria parasites. Am Soc Trop Med Hyg 1985;34(2):223–7.Google Scholar
  33. 33.
    Brockleman CR, Wongsattayonant B, Tan-Ariya P, Fuchareon S. Thalassemic erythrocytes inhibitin vitro growth ofPlasmodium falciparum. J Clin Microbiol 1987;25:56–60.Google Scholar
  34. 34.
    Miller J, Golenser J, Spira DT. Plasmodium falciparum: thiol status and growth in normal and glucose-6-dehydrogenase deficient human erythrocytes. Exp Parasitol 1984;57:239–47.Google Scholar
  35. 35.
    Ginsburg H, Atamna H. The redox status of malaria-infected erythrocytes: an overview with an emphasis on unresolved problems. Parasite 1994;1:5–13.Google Scholar
  36. 36.
    Ockenhouse CF, Shear HL. Oxidative killing of the intraerythrocytic malaria parasiteP. yoelii by activated macrophages. J Immunol 1984;132:424–31.Google Scholar
  37. 37.
    Wozencraft AO, Dockrell HM, Taverne J, Targett GAT, Playfair JHL. Killing of human malaria parasites by macrophage secretory products. Infect Immun 1984;43:664–9.Google Scholar
  38. 38.
    Nnalue NA, Friedman MJ. Evidence for a neutrophil-mediated protective response in malaria. Parasite Immunol 1988;10:47–58.Google Scholar
  39. 39.
    Mohan K, Dubey ML, Ganguly NK, Mahajan RC.Plasmodium falciparum: Role of activated blood monocytes in erythrocyte membrane damage and red cell loss during malaria. Exp Parasitol 1995;80:54–63.Google Scholar
  40. 40.
    Golenser J, Marva E, Chevion M. The survival ofPlasmodium under oxidant stress. Parasitol Today 1991;7(6):142–6.Google Scholar
  41. 41.
    Zhang Y, Konig I, Schirmer RH. Glutathione reductase-deficient erythrocytes as host cells of malarial parasites. Biochem Pharmacol 1988;37:861–5.Google Scholar
  42. 42.
    Roth EF, Puprecht RM, Schulman S, Vandenberg J, Olson JA. Ribose metabolism and nucleic acid synthesis in normal and glucose-6-phosphate dehydrogenase-deficient human erythrocytes infected withP. falciparum. J Clin Invest 1986;77:1129–35.Google Scholar
  43. 43.
    Bhattacharya J. Erythrocytic GSH level and stability in P.vivax malaria. In: Ong ASH, Packer L, eds. Lipid-soluble antioxidants: Biochemistry and Clinical Applications. Basel: Birkhauser Verlag, 1992;373–96.Google Scholar
  44. 44.
    Eckman JR, Eaton JW. Dependence of plasmodial glutathione metabolism on the host cell. Nature 1979;278:754–6.Google Scholar
  45. 45.
    Scheibel LW. Plasmodial metabolism and related organellar function during various stages of the life cycle carbohydrates. In: Wensdorfer WH, Mc Gregor I, eds. Malaria: principles and practices of malariology. Edinburgh: Churchill Livingstone, 1988;199–212.Google Scholar
  46. 46.
    Becuwe P, Slomianny C, Camus D, Dive D. Presence of an endogenous superoxide dismutase activity in three rodent malaria species. Parasitol Res 1993;79:349–52.Google Scholar
  47. 47.
    Fairfield AS, Abusch A, Ranz A, Eaton JW, Meshnick SR. Oxidant defense enzymes ofP. falciparum. Mol Biochem Parasitol 1988;30:77–82.Google Scholar
  48. 48.
    Howard RJ, Andrutis AT, Leech JH, Ellis WY, Cohen LA, Kirk KL. Inhibitory effects of histidine analogues on growth and protein synthesis byP. falciparum in vivo. Biochem Pharmacol 1986;35:1589–96.Google Scholar
  49. 49.
    Kilejian A. A unique histidine-rich polypeptide from the malaria parasiteP. Lophurae. J Biol Chem 1974;249:4650–5.Google Scholar
  50. 50.
    Ravetch JV, Feder R, Pavlovec A, Blobel G. Primary structure and genomic organisation of the histidine-rich protein of the malaria parasiteP. Lophurae. Nature 1984;312:616–20.Google Scholar
  51. 51.
    Golenser J, Marva E, Chevion M. The survival ofPlasmodium under oxidant stress. Parsitol Today 1991;7(6):142–6.Google Scholar
  52. 52.
    Chevion M. A site-specific mechanism for free radical induced biological damage: the essential role of redoxactive transition metals. Free Radical Biol Med 1988;5:27–37.Google Scholar
  53. 53.
    Schubert J, Watson JA, Baecker JM. Formation of a histidineperoxide adduct by hydrogen peroxide or ionising radiation on histidine. Int J Radiat Biol 1968;14:577–83.Google Scholar
  54. 54.
    Polder TW, Eling WMC, Curfs JHAJ, Jerusalem CR, Wijers-Rouw M. Ultrastructural changes in the blood-brain barrier of mice infected withP. berghei. Acta Leiden 1992;60(2):31–46.Google Scholar
  55. 55.
    Polder T, Jerusalem C, Eling W. Topographical distribution of the cerebral lesions in mice infected withP. berghei. Tropenmed Parasitol 1983;34:235–43.Google Scholar
  56. 56.
    Curfs JHAJ, Schetters TPM, Hermsen CC, Jerusalem CR, Eling WMC. Immunological aspects of cerebral lesions in murine malaria. Clin Exp Immunol 1989;75:136–40.Google Scholar
  57. 57.
    Porta J, Carota A, Pizzolato GP, et al. Immunopathological changes in human cerebral malaria. Clin Neuropathol 1993;12(2):142–6.Google Scholar
  58. 58.
    Berendt AR, Turner GDH, Newbold CI. Cerebral malaria: The sequestration hypothesis. Parasitol Today 1994;10(10):412–4.Google Scholar
  59. 59.
    Aikawa M. Morphological changes in erythrocytes induced by malarial parasites. Biol Cell 1988;64:173–81.Google Scholar
  60. 60.
    Ockenhouse CF, Ho M, Tandon NN, et al. Molecular basis of sequestration in severe and uncomplicatedP. falciparum malaria: differential adhesion of infected erythrocytes to CD36 and ICAM-1. J Infect Dis 1991;164(1):163–9.Google Scholar
  61. 61.
    Pongponratn E, Riganti M, Punpoowong B, Aikawa M. Microvascular sequestration of parasitised erythrocytes in humanfalciparum malaria: a pathological study. Am J Trop Med Hyg 1991;44:168–75.Google Scholar
  62. 62.
    Ockenhouse CF, Tegoshi T, Maeno Y, et al. Human vascular endothelial cell adhesion receptors ofP. falciparum-infected erythrocytes: Role for endothelial leukocyte adhesion molecule 1 and vascular cell adhesion molecule 1. J Exp Med 1992;176:1183–9.Google Scholar
  63. 63.
    Clark IA, Rockett KA. The cytokine theory of human cerebral malaria. Parasitol Today 1994;10(10):410–2.Google Scholar
  64. 64.
    Finley RW, Mackay LJ, Lambert P-H. VirulentP. berghei malaria: prolonged survival and decreased cerebral pathology in T-cell nude deficient nude mice. J Immunol 1982;129:2213–8.Google Scholar
  65. 65.
    Grau GE, Piguet P-F, Engers JD, Louis JA, Vassalli P, Lambert P-H. L3T4+T lymphocytes play a major role in the pathogenesis of murine cerebral malaria. J Immunol 1986;137:2348–54.Google Scholar
  66. 66.
    Curfs JHAJ, Schetters TPM, Hermsen CC, Jerusalem CR, vanZon AAJC, Eling WMC. Immunological aspects of cerebral lesions in murine malaria. Clin Exp Immunol 1989;75:136–40.Google Scholar
  67. 67.
    Grau GE, Kindler V, Piguet P-F, Lambert P-H, Vassalli P. Prevention of experimental cerebral malaria by anticytokine antibodies. J Exp Med 1988; 168:1499–504.Google Scholar
  68. 68.
    Curfs JHAJ, Hermsen CC, Kremsner P, et al. Tumour necrosis factor-α and macrophages inP. berghei-induced cerebral malaria. Parasitology 1993;107:125–34.Google Scholar
  69. 69.
    Grau GE, Bieler G, Pointaire P, et al. Significance of cytokne production and adhesion molecules in malaria immunopathology. Immunol Lett 1990;25:189–94.Google Scholar
  70. 70.
    Eling WMC, Kremsner PG. Cytokines in malaria, pathology and protection. Biotherapy 1994;7:211–21.Google Scholar
  71. 71.
    Kwiatkowski D, Hill AVS, Sambou I, et al. TNF concentration in fatal cerebral, non-fatal cerebral and uncomplicatedP. falciparum malaria. Lancet 1990;336:1201–4.Google Scholar
  72. 72.
    Shaffer N, Grau GE, Hedberg K, et al. Tumour necrosis factor and severe malaria. J Infect Dis 1991;163:96–101.Google Scholar
  73. 73.
    DeKossodo S, Grau GE. Profiles of cytokine production in relation with susceptibility to cerebral malaria. J Immunol 1993;151(9):4811–20.Google Scholar
  74. 74.
    Grau GE, Piguet P-F, Vassalli P, Lambert P-H. Tumor-necrosis factor and other cytokines in cerebral malaria: Experimental and clinical data. Immunol Rev 1989;112:49–70.Google Scholar
  75. 75.
    Grau GE, Piguet P-F, Vassalli P, Lambert P-H. Involvement of tumour necrosis factor and other cytokines in immunemediated vascular pathology. Int Arch Allergy Appl Immunol 1989;88:34–9.Google Scholar
  76. 76.
    Goldring JD, Hommel M. Variation in the cytoadherence characteristics of malaria parasites: Is this a true virulence factor? Mem Inst Oswaldo Cruz 1992;87:313–22.Google Scholar
  77. 77.
    Klebanoff SJ, Vadas MA, Harlan J, et al. Stimulation of neutrophils by tumour necrosis factor. J Immunol 1980;136:4220–5.Google Scholar
  78. 78.
    Shparber M, Nathan C. Autocrine activation of macrophages by recombinant tumour necrosis factor but not recombinant interleukine-1. Blood 1986;86(suppl 1):86a.Google Scholar
  79. 79.
    Clark IA, Chaudhri G, Cowden WB. Interplay of reactive oxygen-species and tumour necrosis factor in tissue injury. In: Cerutti P, Fridovich I, Mc Cord J, eds. UCLA Symp Mol Cell Biol, New Ser. New York: Alan R Liss, 1988;82:53–60.Google Scholar
  80. 80.
    Das BS, Mohanty S, Mishra SK, et al.. Increased cerebrospinal fluid protein and lipid peroxidation products in patients with cerebral malaria. Trans R Soc Trop Med Hyg 1991;85:733–4.Google Scholar
  81. 81.
    Clark IA, Hunt NH, Cowden WB. Oxygen-derived free radicals in the pathogenesis of parasitic disease. In: Baker JR, Muller R, eds. Advances in Parasitology. Academic Press, 1986;25:1–45.Google Scholar
  82. 82.
    Gannon DE, Varani J, Phan SH, et al. Source of iron in neutrophil-mediated killing of endothelial cells. Lab Invest 1987;57(1):37–44.Google Scholar
  83. 83.
    Chan PH, Schmidley JW, Fishman RA, Longar SM. Brain injury, edema, and vascular permeability changes induced by oxygen-derived free radicals. Neurology 1984;34:315–20.Google Scholar
  84. 84.
    Palmer C, Roberts RL, Bero C. Deferoxamine posttreatment reduces ischemic brain injury in neonatal rats. Stroke 1994;25(5):1039–45.Google Scholar
  85. 85.
    Denicole A, Souza JM, Gatti RM, Augusto O, Radi R. Desferrioxamine inhibition of the hydroxyl radical-like reactivity of peroxynitrite: Role of the hydroxamic groups. Free Rad Biol Med 1995;1:11–9.Google Scholar
  86. 86.
    Clark IA, Hunt NH. Evidence for reactive oxygen intermediates causing hemolysis and parasite death in malaria. Inf Immun 1983;39(1):1–6.Google Scholar
  87. 87.
    Clark IA, Hunt NH, Cowden WB, Maxwell LE, Mackie EJ. Radical-mediated damage to parasites and erythrocytes inPlasmodium vinckei infected mice after injection of t-butyl hydroperoxide. Clin Exp Immunol 1984;56:524–30.Google Scholar
  88. 88.
    Woerdenbag HJ, Lugt CB, Pras N.Artemisia annua L: a source of novel antimalarial drugs. Pharm Weekbl (Sci) 1990;12:169–81.Google Scholar
  89. 89.
    Titulaer HAC, Zuidema J, Lugt ChB. Formulation and pharmacokinetics of artemisinin and its derivatives. Int J Pharm 1991;69:83–92Google Scholar
  90. 90.
    Titulaer HAC, Zuidema J, Kager PA, Wetsteyn JCFM, Lugt ChB, Merkus FWHM. The pharmacokinetics of artemisinin after oral, intramuscular and rectal administration to human volunteers. J Pharm Pharmacol 1990;42:810–3.Google Scholar
  91. 91.
    Zhang Y, Hempelmann E, Schirmer RH. Glutathione reductase inhibitors as potential antimalarial drugs. Effects of nitrosureas onPlasmodium falciparum in vitro. Biochem Pharmacol 1988;37(5):855–60.Google Scholar
  92. 92.
    Thumwood CM, Hunt NH, Cowden WB, Clark IA. Antioxidants can prevent cerebral malaria inP. berghei-infected mice. Br J Exp Pathol 1989;70:293–303.Google Scholar
  93. 93.
    Gordeuk V, Thuma P, Brittenham G. et al. Effect of iron chelation therapy on recovery from deep coma in children with cerebral malaria. N Eng J Med 1992;327(21):1473–7.Google Scholar
  94. 94.
    Levander OA, Ager AL, Morris VC, May RG.P. yoelii: comparative antimalarial activities of dietary fish oils and fish oil concentrates in vitamin E-deficient mice. Exp Parasitol 1990;70:323–9.Google Scholar
  95. 95.
    Levander OA, Ager AL, Morris VC, May RG. Menhaden-fish oil in a vitamin E-deficient diet: protection against chloroquine-resistant malaria in mice. Am J Clin Nutr 1989;50:1237–9.Google Scholar
  96. 96.
    Levander, OA, Ager, AL, Morris, VC, Fontela, R, May, RG. Menhaden oil (MO) protects against malaria in mice fed ground chow. FASEB J 1992;6:A1212Google Scholar
  97. 97.
    Blok WE, Vogels MTE, Curfs JHAJ, Eling WMC, Buurman WA, Van derMeer JWM. Dietary fish-oil supplementation in experimental gram-negative infection and in cerebral malaria in mice. J Infect Dis 1992;165:898–903.Google Scholar
  98. 98.
    Levander OA, Ager AL. Malarial parasites and antioxidant nutrients. Parasitology 1993;107:S95–106.Google Scholar
  99. 99.
    Ohnishi ST, Ohnishi N, Oda Y, Katsuoka M. Prostaglandin derivatives inhibit the growth of malarial parasites in mice. Cell Biochem Funct 1989;7:105–9.Google Scholar
  100. 100.
    Eaton JW, Eckman JR, Berger E, Jacob HS. Suppression of malaria infection by oxidant-sensitive host erythrocytes. Nature 1976;264:758–60.Google Scholar
  101. 101.
    Marva E, Golenser J, Cohen A, Kitrossky N, Harel R, Chevion M. The effects of ascorbate-induced free radicals onP. falciparum. Trop Med Parasitol 1992;43:17–23.Google Scholar
  102. 102.
    Levander OA, Fontela R, Morris VC, Ager ALJr. Protection against murine cerebral malaria by dietary-induced oxidative stress. J Parasitol 1995;81(1):99–103.Google Scholar
  103. 103.
    Curfs JHAJ, van derMeer JWM, Sauerwein RW, Eling WMC. Low dosages of interleukin-1 protect mice against lethal cerebral malaria. J Exp Med 1990;72:1287–91.Google Scholar
  104. 104.
    Hunt NH, Manduci N, Thumwood CM. Amelioration of murine cerebral malaria by dietary restriction. Parasitol 1993;107:471–6.Google Scholar
  105. 105.
    Hien TT, White NJ. Qinghaosu. Lancet 1993;341(6):603–8.Google Scholar
  106. 106.
    Maeno Y, Brown AE, Dahlem Smith C, et al. A nonhuman primate model for human cerebral malaria: effects of artesunate (qinghaosu derivative) on rhesus monkeys experimentally infected withPlasmodium coatneyi. Am J Trop Med Hyg 1993;49(6):726–34.Google Scholar
  107. 107.
    Meshnick SR, Yang YZ, Scott MD, Kuypers F. Biochemical effects of artemisinin on the red cell. XIII International Congress on Tropical Medicine and Malaria, Pattaya, 1992, abstr 1:86–7.Google Scholar
  108. 108.
    Meshnick SR. The mode of action of antimalarial endoperoxides. Trans Roy Soc Trop Med Hyg 1994;88(suppl 1):31–2.Google Scholar
  109. 109.
    Krungkrai SR, Yuthavong Y. The antimalarial action of qinghaosu and artesunate in combination with agents that modulate oxidant stress. Trans Roy Soc Trop Med Hyg 1987;81:710–4.Google Scholar
  110. 110.
    Meshnick SR, Tsang TW, Lin FB, et al. Activated oxygen mediates the antimalarial activity of qinghaosu. Prog Clin Biol Res 1989;313:95–104.Google Scholar
  111. 111.
    Levander OA, Ager ALJr, Morris VC, May RG. Qinghaosu, dietary vitamin E, selenium, and cod-liver oil: effect on the susceptibility of mice to the malarial parasitePlasmodium yoelii. Am J Clin Nutr 1989;50:346–52.Google Scholar
  112. 112.
    Meshnick SR, Thomas A, Ranz A, Xu C-M, Pan H-Z. Artemisinin (qinghaosu): the role of intracellular hemin in its mechanism of antimalarial action. Mol Biochem Parasitol 1991;49:181–90.Google Scholar
  113. 113.
    Meshnick SR, Yang YZ, Lima V, Kuypers F, Kamchonwarypaisan S, Yuthavong Y. Iron-dependent free radical generation from the antimalarial agent artemisinin (qinghaosu). Antimicrob Agents Chemother 1993;37:1108–14.Google Scholar
  114. 114.
    Zhang F, Gosser D, Meshnick SR. Hemin-catalysed decomposition of artemisinin (qinghaosu). Biochem Pharmacol 1992;43:1805–9.Google Scholar
  115. 115.
    Stahel E, Druilhe P, Gentilini M. Antagonism of chloroquine with other antimalarials. Trans Roy Soc Trop Med Hyg 1988;82:221.Google Scholar
  116. 116.
    Schapira A, Beales PF, Halloran ME, Malaria: Living with drug resistance. Parasitol Today 1993;9(5):168–74.Google Scholar
  117. 117.
    Tanner M, Teuscher T, Alonso PL. SPf66-The first malaria vaccine. Parasitol Today 1995;11(1):10–3.Google Scholar
  118. 118.
    Dalessandro U, Leach A, Drakeley CJ, et al. Efficacy trial of malaria vaccine SPf66 in Gambian infants. Lancet 1995;346 (aug 19):8973.Google Scholar
  119. 119.
    Hershko C Iron chelators in medicine. Molec Aspects Med 1992;13:113–65.Google Scholar
  120. 120.
    Pollack S, Rossan RN, Davidson DE, Escajadillo A. Desferrioxamine suppressesPlasmodium falciparum in Aotus Monkeys. Proc Soc Exp Biol Med 1987;184:162–4.Google Scholar
  121. 121.
    Traore O, Carnevale P, Kaptue-Noche L, et al. Preliminary report on the use of desferrioxamine in the treatment ofPlasmodium falciparum malaria. Am J Hematol 1991;37:206–8.Google Scholar
  122. 122.
    Loyevsky M, Lytton SD, Mester B, Libman J, Shanzer A, Cabantchik ZI. The antimalarial action on desferal involves a direct access route to erythrocytic (Plasmodium falciparum) parasites. J Clin Invest 1993;91:218–24.Google Scholar
  123. 123.
    Keystone JS. Prevention of malaria. Drugs 1990;39(3):337–54.Google Scholar
  124. 124.
    Panisko DM, Keystone JS. Treatment of malaria-1990. Drugs 1990;39(2):160–89.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Postma N S 
    • 1
  • Zuidema J 
    • 1
  • Mommérs E C 
    • 2
  • Eling W M C 
    • 2
  1. 1.Department of PharmaceuticsUniversity of UtrechThe Netherlands
  2. 2.Department of Medical MicrobiologyUniversity Hospital NijmegenThe Netherlands

Personalised recommendations