Foundations of Physics

, Volume 8, Issue 7–8, pp 637–652 | Cite as

The light Doppler effect treated by absolute spacetime theory

  • Stefan Marinov


We consider the light Doppler effect within the framework of our absolute spacetime theory, which proceeds from the aether conception for light propagation. We show that for the cases of “observer at rest, source moving” and “source at rest, observer moving” the formulas for the received frequency are the same, but the formulas for the wavelength are different. This is in a drastic contradiction with the formulas given by contemporary physics, which proceeds from the principle of relativity. Our recently performed “coupled-mirrors” experiments show that only our formulas can adequately describe physical reality. The experiment for the measurement of the transverse light Doppler effect proposed by us in another paper is reconsidered and we point out how it can be realized as a compensation experiment. The so-called “rotor” and “rotor-rotor” experiments are analyzed. We show why the rotor experiment carried out with the aim of establishing an aether drift has failed to give any positive result.


Positive Result Doppler Effect Physical Reality Light Propagation Aether 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Marinov,Czech. J. Phys. B24, 965 (1974).Google Scholar
  2. 2.
    S. Marinov,Int. J. Paraphys. 11, 26 (1977).Google Scholar
  3. 3.
    S. Marinov,Int. J. Theor. Phys. 9, 139 (1974).Google Scholar
  4. 4.
    S. Marinov,Int. J. Theor. Phys. 13, 189 (1975).Google Scholar
  5. 5.
    S. Marinov,Int. J. Theor. Phys. 15, 829 (1976).Google Scholar
  6. 6.
    S. Marinov,Found. Phys. 6, 571 (1976).Google Scholar
  7. 7.
    S. Marinov,Phys. Lett. 32A, 183 (1970).Google Scholar
  8. 8.
    S. Marinov,Phys. Lett. 40A, 73 (1972).Google Scholar
  9. 9.
    S. Marinov,Phys. Lett. 44A, 21 (1973).Google Scholar
  10. 10.
    H. E. Ives and G. R. Stilwell,J. Opt. Soc. Am. 28, 215 (1938).Google Scholar
  11. 11.
    G. Otting,Phys. Z. 40, 681 (1939).Google Scholar
  12. 12.
    H. J. Mandelberg and L. Whitten,J. Opt. Soc. Am. 52, 529 (1962).Google Scholar
  13. 13.
    W. Kantor,Spectr. Lett. 4, 61 (1971).Google Scholar
  14. 14.
    J. Stark,Ann. d. Phys. 21, 401 (1906).Google Scholar
  15. 15.
    R. C. Jennison and P. A. Davis,Nature 248, 660 (1974).Google Scholar
  16. 16.
    H. J. Hayet al., Phys. Rev. Lett. 4, 165 (1960).Google Scholar
  17. 17.
    M. Ruderfer,Phys. Rev. Lett. 5, 191 (1960).Google Scholar
  18. 18.
    M. Ruderfer,Phys. Rev. Lett. 7, 361 (1961).Google Scholar
  19. 19.
    D. C. Champeneyet al., Phys. Lett. 7, 241 (1963).Google Scholar
  20. 20.
    K. C. Turner and H. A. Hill,Phys. Rev. 134, B252 (1964).Google Scholar
  21. 21.
    S. Marinov,Phys. Lett. 41A, 433 (1972).Google Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • Stefan Marinov
    • 1
  1. 1.Laboratory for Fundamental Physical ProblemsSofiaBulgaria

Personalised recommendations