Advertisement

Journal of Solution Chemistry

, Volume 8, Issue 6, pp 461–478 | Cite as

Diffusion of symmetrical and spherical solutes in protic, aprotic, and hydrocarbon solvents

  • D. Fennell Evans
  • Toshihiro Tominaga
  • C. Chan
Article

Abstract

The diffusion coefficients of a series of symmetrical tetraalkyltins (tetramethyltin, tetraethyltin, tetrapropyltin, tetrabutyltin, tetradodecyltin) of the gases argon, krypton, xenon, methane, and tetramethylmethane and of carbon tetrachloride and tetraethylmethane in hexane, decane, and tetradecane at 25°C have been determined using the Taylor dispersion technique. Diffusion coefficients for the gases in acetone, 2-propanol, 1-butanol, and 1-octanol were also determined. Deviations from the predictions of Stokes' law were found to be large, and the magnitude of the deviation can be directly related to solute size. The predictions of the Hubbard-Onsager equation were tested using the diffusion data.

Key words

Diffusion Stokes Law nonelectrolytes rare gases tetraalkyltins tetraalkylmethanes carbon tetrachloride methane hexane decane tetradecane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. F. Evans, C. Chan, and B. C. Lamartine,J. Am. Chem. Soc. 99, 6492 (1977).Google Scholar
  2. 2.
    R. Zwanzig,J. Chem. Phys. 38, 1603 (1963);52, 3625 (1970).Google Scholar
  3. 3.
    J. B. Hubbard and L. Onsager,J. Chem. Phys. 67, 4850 (1977).Google Scholar
  4. 4.
    J. B. Hubbard,J. Chem. Phys. 68, 1649 (1978).Google Scholar
  5. 5.
    G. I. Taylor,Proc. R. Soc. London, Ser. A 219, 186 (1953);225, 473 (1954).Google Scholar
  6. 6.
    L. A. M. Janssen,Chem. Eng. Sci. 31, 215 (1976).Google Scholar
  7. 7.
    L. G. Longsworth,J. Phys. Chem. 67, 689 (1963);J. Am. Chem. Soc. 75, 5705 (1953).Google Scholar
  8. 8.
    J. T. Edwards,J. Chem. Educ. 47, 261 (1970);Chem. Ind. London, 774 (1956).Google Scholar
  9. 9.
    A. Bondi,J. Phys. Chem. 68, 441 (1964).Google Scholar
  10. 10.
    M. J. Polissar,J. Chem. Phys. 6, 833 (1938).Google Scholar
  11. 11.
    B. J. Alder, D. M. Gass, and T. E. Wainwright,J. Chem. Phys. 53, 3813 (1970).Google Scholar
  12. 12.
    H. J. Parkhurst, Jr., and J. Jonas,J. Chem. Phys. 63, 2698, 2705 (1975); R. J. Finney, M. Fury, and J. Jonas,J. Chem. Phys. 66, 760 (1977); J. Jonas and J. A. Akai,J. Chem. Phys. 66, 4946 (1977).Google Scholar
  13. 13.
    D. Chandler,J. Chem. Phys. 62, 1358 (1975).Google Scholar
  14. 14.
    S. J. Bertucci and W. H. Flygare,J. Phys. Chem. 63, 1 (1975).Google Scholar
  15. 15.
    K. J. Czworniak, H. C. Anderson, and R. Pecora,Chem. Phys. 11, 451 (1975).Google Scholar
  16. 16.
    B. J. Steel, J. M. Stokes, and R. H. Stokes,J. Phys. Chem. 62, 1514 (1958).Google Scholar
  17. 17.
    T. G. Hiss and E. L. Cussler,AIChE J.,19, 698 (1973).Google Scholar
  18. 18.
    W. Hayduk and S. Cheng,Chem. Eng. Sci. 26, 635 (1971).Google Scholar
  19. 19.
    W. Hayduk and W. D. Buckley,Chem. Eng. Sci. 27, 1997 (1972).Google Scholar
  20. 20.
    M. Born,Z. Phys. 1, 221 (1920).Google Scholar
  21. 21.
    R. M. Fuoss,Proc. Natl. Acad. Sci. U. S. A. 45, 807 (1959).Google Scholar
  22. 22.
    R. H. Boyd,J. Chem. Phys. 35, 1281 (1961);39, 2376 (1963).Google Scholar
  23. 23.
    P. G. Wolynes,J. Chem. Phys. 68, 473 (1978).Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • D. Fennell Evans
    • 1
  • Toshihiro Tominaga
    • 1
  • C. Chan
    • 1
  1. 1.Department of Chemical EngineeringCarnegie-Mellon UniversityPittsburgh

Personalised recommendations