Advertisement

Foundations of Physics

, Volume 9, Issue 3–4, pp 301–327 | Cite as

Mixed-system brain dynamics: Neural memory as a macroscopic ordered state

  • C. I. J. M. Stuart
  • Y. Takahashi
  • H. Umezawa
Article

Abstract

The paper reviews the current situation regarding a new theory of brain dynamics put forward by the authors in an earlier publication. Motivation for the theory is discussed in terms of two issues: the long-standing problem of accounting for the stability and nonlocal properties of memory, and the experimental and theoretical evidence against the classical theory of brain action. It is shown that the new theory provides an explanation and a conceptually unifying framework for phenomena of brain action that resist classical explanation. Further independent experiments provide strong additional support for the theory. The fact that this theory incorporates quantum mechanisms in an essential way is considered to be of wide scientific interest in view of the unique status of the brain in relation to the physical, biological, and mental orders in nature.

Keywords

Quantum Mechanism Independent Experiment Brain Action Classical Theory Current Situation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. O. Schmitt, P. Dev, and B. H. Smith,Science 193, 114 (1976).Google Scholar
  2. 2.
    C. I. J. M. Stuart, Y. Takahashi, and H. Umezawa,J. Theor. Biol. 71, 605 (1978).Google Scholar
  3. 3.
    M. R. Rosenzweig and E. L. Bennett, eds.,Neural Mechanisms in Learning and Memory (MIT, Cambridge, Mass., 1976).Google Scholar
  4. 4.
    A. Rémond, ed.,Handbook of Electroencephalography and Clinical Neurophysiology, Vol. 6a,The EEG of the Waking Adult (Elsevier, Amsterdam, 1976).Google Scholar
  5. 5.
    R. Elul,Int. Rev. Neurobiol. 15, 227 (1972).Google Scholar
  6. 6.
    R. Cooper, A. L. Winter, H. J. Crow, and W. G. Walter,Electroenceph. Clin. Neurophysiol. 19, 217 (1965).Google Scholar
  7. 7.
    E. R. John,Science 177, 850 (1972).Google Scholar
  8. 8.
    B. McA. Sayers, H. A. Beagley, and W. R. Henshall,Nature 247, 481 (1974).Google Scholar
  9. 9.
    B. McA. Sayers and H. A. Beagley,Nature 260, 461 (1976).Google Scholar
  10. 10.
    E. R. John, F. Bartlett, M. Shimokochi, and D. Kleinman,J. Neurophysiol. 36, 893 (1973).Google Scholar
  11. 11.
    F. Bartlett and E. R. John,Science 181, 764 (1973).Google Scholar
  12. 12.
    W. R. Adey and S. M. Bawin,Neurosci. Res. Prog. Bull. 15, 10,104 (1977).Google Scholar
  13. 13.
    W. R. Adey,BioSystems 8, 163 (1977).Google Scholar
  14. 14.
    Rakic,Local Circuit Neurons (MIT, Cambridge, Mass., 1976).Google Scholar
  15. 15.
    L. Iversen, inNeurosci. Res. Prog. Bull., F. O. Schmitt and F. G. Worden, eds., in press.Google Scholar
  16. 16.
    K. S. Lashley,Science 73, 245 (1931).Google Scholar
  17. 17.
    F. O. Schmitt and T. Melnechuk,Neurosci. Res. Symp. Summaries 1, 328 (1966).Google Scholar
  18. 18.
    W. J. Freeman,Prog. Theor. Biol. 2, 87 (1971).Google Scholar
  19. 19.
    H. R. Wilson and J. D. Cowan,Biophys. J. 12, 1 (1972).Google Scholar
  20. 20.
    W. A. Little and G. L. Shaw,Behav. Biol. 14, 115 (1975).Google Scholar
  21. 21.
    K. H. Pribram,Languages of the Brain (Prentice-Hall, Englewood Cliffs, New Jersey, 1971), Chapter 8.Google Scholar
  22. 22.
    L. M. Ricciardi and H. Umezawa,Kybernetik 4, 44 (1967).Google Scholar
  23. 23.
    L. Leplae, R. N. Sen, and H. Umezawa,Nuovo Cim. 49B, 1 (1967).Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • C. I. J. M. Stuart
    • 1
  • Y. Takahashi
    • 1
  • H. Umezawa
    • 1
  1. 1.Center for Quantum Field Theory and Complex SystemsUniversity of AlbertaEdmontonCanada

Personalised recommendations