Foundations of Physics

, Volume 6, Issue 5, pp 583–587 | Cite as

Quantum mechanics in finite dimensions

  • T. S. Santhanam
  • A. R. Tekumalla
Article

Abstract

We explicitly compute, following the method of Weyl, the commutator [Q, P] of the position operatorQ and the momentum operatorP of a particle when the dimension of the space on which they act is finite with a discrete spectrum; and we show that in the limit of a continuous spectrum with the dimension going to infinity this reduces to the usual relation of Heisenberg.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Weyl,Theory of Groups and Quantum Mechanics (Dover, New York, 1950), pp. 272–280.Google Scholar
  2. 2.
    J. Schwinger,Proc. Nat. Acad. 46, 570 (1960).Google Scholar
  3. 3.
    A. Ramakrishnan,L-matrix Theory or the Grammar of Dirac Matrices (Tate McGraw-Hill, Bombay, 1972).Google Scholar
  4. 4.
    K. Morinaga and T. Nono,J. Sci. Hiroshima Univ. A6, 13 (1952).Google Scholar
  5. 5.
    K. Yamazaki, “6n Projective Representations and Ring Extensions of Finite Groups,”J. Fac. Sci., Univ. Tokyo, Sect. I 10, 147 (1964).Google Scholar
  6. 6.
    A. O. Morris,Quart. J. Math. (Oxford) 18, 7 (1967).Google Scholar
  7. 7.
    J. von Neumann,Mathematical Foundations of Quantum Mechanics (Princeton Univ. Press, Princeton, New Jersey, 1955).Google Scholar
  8. 8.
    F. R. Gantmacher,Matrix Theory (Chelsea, New York, 1959), Vol. I, p. 239.Google Scholar
  9. 9.
    W. Heisenberg,The Physical Principles of the Quantum Theory (Dover, New York, 1931), p. 129.Google Scholar
  10. 10.
    P. A. M. Dirac,Proc. Roy. Soc. A 113, 621 (1927).Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • T. S. Santhanam
    • 1
    • 2
  • A. R. Tekumalla
    • 3
  1. 1.MatscienceMadrasIndia
  2. 2.Physikalisches Institut der Universität WurzburgWest Germany
  3. 3.MatscienceMadrasIndia

Personalised recommendations