Foundations of Physics

, Volume 8, Issue 11–12, pp 823–831 | Cite as

The superfluid as a source of all interactions

  • K. P. Sinha
  • E. C. G. Sudarshan


The superfluid state of fermion-antifermion fields developed in our previous papers is generalized to include higher orbital and spin states. In addition to single-particle excitations, the system is capable of having real and virtual bound or quasibound composite excitations which are akin to bosons of spinJP equal to0, 1, 2+, etc. These pseudoscalar, vector, and tensor bosons can be massive or massless and provide the vehicles for strong, electromagnetic, weak, and gravitational interactions. The concept that the basic (unmanifest) fermion-antifermion interaction can lead to a multiplicity of manifest interactions seems to provide a basis for a unified field theory.


Field Theory Spin State Gravitational Interaction Unify Field High Orbital 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. P. Sinha, C. Sivaram, and E. C. G. Sudarshan,Found. Phys. 6, 65 (1976).Google Scholar
  2. 2.
    K. P. Sinha, C. Sivaram, and E. C. G. Sudarshan,Found. Phys. 6, 717 (1976).Google Scholar
  3. 3.
    C. Sivaram and K. P. Sinha,Nuovo Cimento Lett. 8, 324 (1973).Google Scholar
  4. 4.
    E. A. Lord, K. P. Sinha, and C. Sivaram,Prog. Theor. Phys. 52, 161 (1974).Google Scholar
  5. 5.
    C. Sivaram and K. P. Sinha,Phys. Lett. 60B, 181 (1976).Google Scholar
  6. 6.
    C. Sivaram and K. P. Sinha,Progr. Theoret. Phys. 55, 1288 (1976).Google Scholar
  7. 7.
    K. P. Sinha and C. Sivaram, inProc. of International Conference on Frontiers of Theoretical Physics (Delhi, 1977).Google Scholar
  8. 8.
    C. Sivaram and K. P. Sinha,Phys. Rev. D 16, 1975 (1977).Google Scholar
  9. 9.
    E. C. G. Sudarshan and R. E. Marshak, inProc. of the Padua-Venice Conference, Venice (1957); reprinted in P. K. Kabir, ed.,Development of Weak Interactions (Gordon and Breach, New York).Google Scholar
  10. 10.
    A. Salam, inElementary Particle Theory (Nobel Symposium No. 8), N. Svartholm, ed. (Almquist and Wiksell, Stockholm, 1968).Google Scholar
  11. 11.
    S. Weinberg,Phys. Rev. Lett. 19, 1264 (1967);Phys. Rev. D 7, 2887 (1973).Google Scholar
  12. 12.
    J. Bardeen, L. N. Cooper, and J. R. Schreiffer,Phys. Rev. 108, 1175 (1957).Google Scholar
  13. 13.
    K. A. Brueckner, T. Soda, P. W. Anderson, and P. Morel,Phys. Rev. 118, 1442 (1960).Google Scholar
  14. 14.
    P. W. Anderson and P. Morel,Phys. Rev. 123, 1911 (1961).Google Scholar
  15. 15.
    R. Balian and N. R. Werthamer,Phys. Rev. 131, 1553 (1963).Google Scholar
  16. 16.
    A. J. Legget,Rev. Mod. Phys. 47, 331 (1975).Google Scholar
  17. 17.
    H. P. Durr, W. Heisenberg, H. Mitter, S. Schlieder, and K. Yamazaki,Z. Naturforsch. 14a, 441 (1959).Google Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • K. P. Sinha
    • 1
  • E. C. G. Sudarshan
    • 2
    • 3
  1. 1.H. H. Wills Physics LaboratoryUniversity of BristolBristolEngland
  2. 2.Indian Institute of ScienceBangaloreIndia
  3. 3.Center for Particle TheoryUniversity of TexasAustin

Personalised recommendations