Advertisement

Planta

, Volume 194, Issue 4, pp 565–572 | Cite as

Description of somatic-embryo-forming single cells in carrot suspension cultures employing video cell tracking

  • Marcel A. J. Toonen
  • Theo Hendriks
  • Ed D. L. Schmidt
  • Harrie A. Verhoeven
  • Ab van Kammen
  • Sacco C. de Vries
Article

Abstract

A cell-tracking system was established to determine the capability of individual single suspension cells of carrot (Daucus carota L.) to develop into somatic embryos. When immobilised in phytagel, 127 out of 30 318 single suspension cells smaller than 22 μm in diameter developed into a somatic embryo. Single cells present at the start of the experiment were classified on the basis of their morphology into five groups: small spherical vacuolated cells; small spherical cytoplasm-rich cells; oval vacuolated cells; elongated vacuolated cells and cells that could not be classified into either one of these groups. Single cells of all morphologically distinguishable single cell types developed into somatic embryos with a frequency that varied between 19 and 100 somatic embryos per 10 000 cells. This suggests that the capability of individual single cells to form somatic embryos is not restricted to a particular cell type distinguishable on the basis of its morphology. Three major pathways were observed during development. Oval and elongated cells developed into somatic embryos via an asymmetrical cell cluster. Spherical cells developed via a symmetrical cell cluster into somatic embryos. Before formation of a somatic embryo, cells of a more variable initial morphology first developed aberrantly shaped cell clusters. This suggests that the developmental pathway leading to a somatic embryo can be predicted by the initial single-cell morphology.

Key words

Cell tracking Daucus Development (single cell) 2,4-Dichlorophenoxyacetic acid Phytagel (cell immobilisation) Somatic embryogenesis 

Abbreviations

2,4-D

2,4-dichlorophenoxyacetic acid

B5-0

Gamborgs B5 medium

B5-0.2

Gamborgs B5 medium supplemented with 0.2 μM 2,4-D

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Backs-Hüsemann, D., Reinert, J. (1970) Embryobildung durch isolierte Einzelzellen aus Gewebekulturen von Daucus carota. Protoplasma 70, 49–60CrossRefGoogle Scholar
  2. Botti, C., Vasil, I.K. (1984) Ontogeny of somatic embryos of ennisetum americanum. II. In cultured immature inflorescences. Can. J. Bot. 62, 1629–1635CrossRefGoogle Scholar
  3. Coutos-Thevenot, P., Jouanneau, J.P., Brown, S., Petiard, V., Guern, J. (1990) Embryogenic and non-embryogenic cell lines of Daucus carota cloned from meristematic cell clusters: relation with cell ploidy determined by flow cytometry. Plant Cell Rep. 8, 605–608CrossRefPubMedGoogle Scholar
  4. De Jong, A.J., Schmidt, E.D.L., De Vries, S.C. (1993) Early events in higher-plant embryogenesis. Plant Mol. Biol. 22, 367–377CrossRefPubMedGoogle Scholar
  5. De Vries, S.C., Booij, H., Meyerink, P., Huisman, G., Wilde, H.D., Thomas T.L., Van Kammen, A. (1988) Acquisition of embryogenic potential in carrot cell-suspension cultures. Planta 176, 196–204CrossRefPubMedGoogle Scholar
  6. Dos Santos, A.V.P., Cutter, E.G., Davey, M.R. (1983) Origin and development of somatic embryos in Medicago sativa L. (Alfalfa). Protoplasma117, 107–115CrossRefGoogle Scholar
  7. Dudits, D., Bögre, L., Györgyey, J. (1991) Molecular and cellular approaches to the analysis of plant embryo development from somatic cells in vitro. J. Cell Sci. 99, 475–484Google Scholar
  8. Gamborg, O.L., Miller, R.A., Ojima, K. (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50, 151–158CrossRefPubMedGoogle Scholar
  9. Halperin, W. (1966) Alternative morphogenetic events in cell suspensions. Am. J. Bot. 53, 443–453CrossRefGoogle Scholar
  10. Hari, V. (1980) Effect of cell density changes and conditioned media on carrot cell embryogenesis. Z. Planzenphysiol. 96, 227–231CrossRefGoogle Scholar
  11. Ho, W.J., Vasil, I.K. (1983) Somatic embryogenesis in sugarcane (Saccharum officinarum L.) I. The morphology and physiology of callus formation and the ontogeny of somatic embryos. Protoplasma118, 169–180CrossRefGoogle Scholar
  12. Kiyosue, T, Satoh, S., Kamada, H., Harada, H. (1991) Purification and immuno-histochemical detection of an embryogenic cell protein in carrot. Plant Physiol. 95, 1077–1083CrossRefPubMedPubMedCentralGoogle Scholar
  13. Komamine, A., Matsumoto, M., Tsukahara, M., Fujiwara, A., Kawahara, R., Ito, M., Smith, J., Nomura, K., Fujumura, T. (1990) Mechanisms of somatic embryogenesis in cell cultures — physiology, biochemistry and molecular biology. In: Progress in plant cellular and molecular biology, pp. 307–313, Nijkamp, H.J.J., Van der Plas, L.H.W., Van Aartrijk, J., eds. Kluwer Academic Publishers, Dordrecht, The NetherlandsCrossRefGoogle Scholar
  14. Konar, R.N., Thomas, E., Street, H.E. (1972) Origin and structure of embryoids arising from epidermal cells of the stem of Ranunculus sceleratus L. J. Cell Sci. 11, 77–93PubMedGoogle Scholar
  15. Kreuger, M., Van Holst, G.J. (1993) Arabinogalactan proteins are essential in somatic embryogenesis of Daucus carota L. Planta189, 243–248CrossRefGoogle Scholar
  16. Nomura, K., Komamine, A. (1985) Identification and isolation of single cells that produce somatic embryos at a high frequency in a carrot suspension culture. Plant Physiol. 79, 988–991CrossRefPubMedPubMedCentralGoogle Scholar
  17. Nuti Ronchi, V., Giorgetti, L., Tonelli, M., Martini, G. (1992a) Ploidy reduction and genome segregation in cultured carrot cell lines. I. Prophase chromosome reduction. Plant Cell Tissue Organ Cult. 30, 107–114CrossRefGoogle Scholar
  18. Nuti Ronchi, V., Giorgetti, L., Tonelli, M., Martini, G. (1992b) Ploidy reduction and genome segregation in cultured carrot cell lines. II. Somatic meiosis. Plant Cell Tissue Organ Cult. 30, 115–119CrossRefGoogle Scholar
  19. Pennell, R.I., Janniche, L., Scofield, G.N, Booij, H., De Vries, S.C., Roberts, K. (1992) Identification of a transitional cell state in the developmental pathway to carrot somatic embryogenesis. J. Cell Biol. 119, 1371–1380CrossRefPubMedGoogle Scholar
  20. Smith, D.L., Krikorian, A.D. (1990) Low external pH replaces 2,4-D in maintaining and multiplying 2,4-D-initiated embryogenic cells of carrot. Physiol. Plant. 80, 329–336CrossRefPubMedGoogle Scholar
  21. Spangenberg, G., Koop, H.U., Schweiger, H.G. (1985) Different types of protoplasts fromBrassica napus L.: analysis of conditioning effects at the single-cell level. Eur. J. Cell Biol. 39, 41–45Google Scholar
  22. Sterk, P, Booij, H, Schellekens, G.A., Van Kammen, A., De Vries, S.C. (1991) Cell-specific expression of the carrot EP2 lipid transfer protein gene. Plant Cell3, 907–921CrossRefPubMedPubMedCentralGoogle Scholar
  23. Vieitez, F.J., Ballester, A., Vieitez, A.M. (1992) Somatic embryogenesis and plantlet regeneration from cell suspension cultures of Fagus sylvatica L. Plant Cell Rep. 11, 609–613CrossRefPubMedGoogle Scholar
  24. Widholm, J.M. (1972) The use of fluorescein diacetate and phenosafranine for determining viability of cultured plant cells. Stain Technol. 47, 189–194CrossRefPubMedGoogle Scholar
  25. Wilde, H.D., Nelson, W.S., Booij, H., De Vries, S.C., Thomas, T.L. (1988) Gene-expression programs in embryogenic and non-embryogenic carrot cultures. Planta176, 205–211CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Marcel A. J. Toonen
    • 1
  • Theo Hendriks
    • 1
  • Ed D. L. Schmidt
    • 1
  • Harrie A. Verhoeven
    • 2
  • Ab van Kammen
    • 1
  • Sacco C. de Vries
    • 1
  1. 1.Department of Molecular BiologyAgricultural University WageningenWageningenThe Netherlands
  2. 2.Centre of Plant Breeding and Reproduction Research (CPRO-DLO)WageningenThe Netherlands

Personalised recommendations