Journal of Materials Science

, Volume 25, Issue 1, pp 399–406 | Cite as

Effect of mechanical alloying beyond the completion of glass formation for Ni-Zr alloy powders

  • Uichiro Mizutani
  • Chung Hyo Lee


Elemental powders of nickel and zirconium were mechanically alloyed over a wide concentration range 10 to 90 at % Zr. The amorphous single phase was formed over the range 20 to 80 at % Zr. The effect of the excessive mechanical alloying on the glass formation was studied by continuing ball-milling beyond the completion of the glass formation for the powders with the average compositions Ni30Zr70, Ni50Zr50 and Ni70Zr30. A partial crystallization took place in all three cases and its initiation was the fastest in Ni30Zr70 and was delayed with decreasing zirconium content. The critical factor for triggering the crystallization was attributed to the oxygen contamination for the zirconium-rich Ni30Zr70 powders and to the reduction in glass-forming ability for the nickel-rich Ni70Zr30 powders. The latter conclusion is drawn from the facts that the impurity concentrations arising from the debris of the stainless steel balls and the vial are gradually accumulated with increasing milling time and that the effective zirconium concentration is reduced below the critical concentration of approximately 20 at % as a result of alloying with the elements iron, chromium and nickel in the stainless steel.


Zirconium Mechanical Alloy Alloy Powder Mill Time Glass Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. C. Koch, O. B. Cavin, C. G. McKamey andJ. O. Scarbrough,Appl. Phys. Lett. 43 (1983) 1017.Google Scholar
  2. 2.
    R. B. Schwarz andW. L. Johnson,Phys. Rev. Lett. 51 (1983) 415.Google Scholar
  3. 3.
    A. W. Weeber, H. Bakker andF. R. De Boer,Europhys. 2 (1986) 445.Google Scholar
  4. 4.
    A. W. Weeber, H. Bakker, H. J. M. Heijligers andG. F. Bastin,Europhys. Lett. 3 (1987) 1261.Google Scholar
  5. 5.
    A. W. Weeber andH. Bakker,J. Phys. F18 (1988) 1359.Google Scholar
  6. 6.
    F. Itoh, T. Sekiuchi, M. Sakurai, T. Fukunaga andK. Suzuki, Proceedings of the 5th Japan Institute of Metals International Symposium on Non-Equilibrium Solid Phases of Metals and Alloys, Kyoto, March, 1988. Supplement to Trans. JIM, Vol. 29 (1988) 127.Google Scholar
  7. 7.
    L. Schultz,Mater. Sci. Engng 97 (1988) 15.Google Scholar
  8. 8.
    F. Petzoldt, B. Scholz andH-D. Kunze,ibid. 97 (1988) 25.Google Scholar
  9. 9.
    R. Brüning, Z. Altounian, J. O. Stromolson andL. Schultz,ibid. 97 (1988) 317.Google Scholar
  10. 10.
    P. Y. Lee andC. C. Koch,J. Mater. Sci. 23 (1988) 2837.Google Scholar
  11. 11.
    K. H. J. Buschow,J. Phys. F14 (1984) 593.Google Scholar
  12. 12.
    Z. Altounian, Tu Guo-Hua andJ. O. Stromolsen,J. Appl. Phys. 54 (1983) 3111.Google Scholar
  13. 13.
    M. V. Nevitt andJ. W. Downey,Trans. Met. Soc. AIME 221 (1961) 1014.Google Scholar
  14. 14.
    M. Kirkpatrick, J. F. Smith andW. L. Larsen,Acta Crystallogr. 15 (1962) 894.Google Scholar
  15. 15.
    L. Bsenko,J. Less-Common Met. 63 (1979) 171.Google Scholar
  16. 16.
    T. B. Massalski, “Binary Alloy Phase Diagrams”, Vol. 2 (American Society for Metals, 1986) p. 1777.Google Scholar
  17. 17.
    The International Union of Crystallography, “International Table for X-ray Crystallography” (Kynock Press, Birmingham, 1962).Google Scholar
  18. 18.
    S. Kanemaki, O. Takehira, H. Komatsu, K. Fukamichi andU. Mizutani, to be published.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1990

Authors and Affiliations

  • Uichiro Mizutani
    • 1
  • Chung Hyo Lee
    • 1
  1. 1.Department of Crystalline Materials of ScienceNagoya UniversityNagoyaJapan

Personalised recommendations