Boundary-Layer Meteorology

, Volume 69, Issue 1–2, pp 43–69

Seasonal and diurnal variations of coherent structures over a deciduous forest

  • Cheng-Hsuan Lu
  • David R. Fitzjarrald
Article

Abstract

Coherent structures in turbulent flow above a midlatitude deciduous forest are identified using a wavelet analysis technique. Coupling between motions above the canopy (z/h=1.5, whereh is canopy height) and within the canopy (z/h=0.6) are studied using composite velocity and temperature fields constructed from 85 hours of data. Data are classified into winter and summer cases, for both convective and stable conditions. Vertical velocity fluctuations are in phase at both observation levels. Horizontal motions associated with the structures within the canopy lead those above the canopy, and linear analysis indicates that the horizontal motions deep in the canopy should lead the vertical motions by 90°. On average, coherent structures are responsible for only about 40% of overall turbulent heat and momentum fluxes, much less than previously reported. However, our large data set reveals that this flux fraction comes from a wide distribution that includes much higher fractions in its upper extremes. The separation distanceLs between adjacent coherent structures, 6–10h, is comparable to that obtained in previous observations over short canopies and in the laboratory. Changes in separation between the summer and winter (leafless) conditions are consistent withLs being determined by a local horizontal wind shear scale.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antonia, R. A., Chambers, A. J., Friehe, C. A., and van Atta, C. W.: 1979, ‘Temperature Ramps in the Atmospheric Surface Layer’,J. Amos. Sci. 36, 99–108.Google Scholar
  2. Argoul, F., Arneodo, A., Grasseau, G., Gagne, Y., Hopfinger, E. J., and Frisch, U.: 1989, ‘Wavelet Analysis of Turbulence Reveals the Multifractal Nature of the Richardson Cascade’,Nature 338, 51–53.Google Scholar
  3. Baldocchi, D. D. and Meyers, T. P.: 1988, ‘Turbulence Structure in a Deciduous Forest’,Boundary-Layer Meteorol.,43, 345–364.Google Scholar
  4. Bergstrom, H. and Högström, U.: 1989, ‘Turbulent Exchange above a Pine Forest. Part II. Organized Structures’,Boundary-Layer Meteorol. 49, 231–263.Google Scholar
  5. Blackwelder, R. F. and Kaplan, R. E.: 1976, ‘On the Wall Structure of the Turbulent Boundary Layer’,J. Fluid Mech. 76, 89–112.Google Scholar
  6. Daubechies, I.: 1989, ‘Orthonormal Bases of Wavelets with Finite Support-Connection with Discrete Filters’, in J. M. Combes, A. Grossmann, and Ph. Tchamitchian (eds.),Wavelets, Springer Verlag, pp. 38–66.Google Scholar
  7. Denmead, O. T. and Bradley, E. F.: 1985, ‘Flux-Gradient Relationships in a Forest Canopy’, in B. H. Hutchison and B. B. Hicks (eds.),The Forest—Atmosphere Interaction, D. Reidel Publishing Co., Dordrecht, pp. 421–442.Google Scholar
  8. Dutton, J. A.: 1969,: ‘Intermittency of Small-Scale Structure’,Radio Sci. 4, 1357–1359.Google Scholar
  9. Dutton, J. A. and Deaven, D. G.: 1971, ‘Some Observed Properties of Atmospheric Turbulence, in M. Rosenblatt and C. W. van Atta (eds.),Lecture Notes in Physics, Vol. 12, Statistical Models and Turbulence, Springer Verlag, pp. 352–383.Google Scholar
  10. Finnigan, J. J.: 1979a: ‘Turbulence in Waving Wheat, I. Mean Statistics and Honami,Boundary-Layer Meteorol. 16, 181–211.Google Scholar
  11. Finnigan, J. J.: 1979b, ‘Turbulence in Waving Wheat, II. Structure of Momentum Transfer’,Boundary-Layer Meteorol.16, 213–236.Google Scholar
  12. Fitzjarrald, D. R., Stormwind, B., Fisch, G., and Cabral, O.: 1988, ‘Turbulent Transport Observed Just above the Amazon Forest’,J. Geophys. Res. 93 (D2), 1551–1563.Google Scholar
  13. Fitzjarrald, D. R. and Moore, K. E.: 1990, ‘Mechanisms of Nocturnal Exchange between the Rain Forest and the Atmosphere’,J. Geophys. Res. 95 (D10), 16839–16850.Google Scholar
  14. Fitzjarrald, D. R., Moore, K. E., Cabral, O. M. R., Scolar, J., and de Abreu Sá, L. D.: 1990, ‘Daytime Turbulent Exchange between the Amazon Forest and the Atmosphere’,J. Geophys. Res. 95, 16825–16838.Google Scholar
  15. Foster, D. R.: 1992, ‘Land-Use History (1730–1990) and Vegetation Dynamics in Central New England, USA’,J. Ecol. 80, 753–772.Google Scholar
  16. Gamage, N. K. K.: 1990, ‘Detection of Coherent Structures in Shear Induced Turbulence Using Wavelet Transform Methods’, Preprints,Ninth Symposium on Turbulence and Diffusion, Roskilde, Denmark, pp. 389–392.Google Scholar
  17. Gao, W., Shaw, R. H., and Paw, K. T.: 1989, ‘Observation of Organized Structure in Turbulent Flow within and above a Forest Canopy’,Boundary-Layer Meteorol. 47, 349–377.Google Scholar
  18. Grossmann, A., Holschneider, M., Kronland-Martinet, R., and Morlet, J.: 1987: ‘Detection of Abrupt Changes in Sound Signals with the Help of Wavelet Transforms’,Inverse Problems: An Interdisciplinary Study. Advances in Electronics and Electron Physics, Supplement 19, Academic Press.Google Scholar
  19. Grossmann, A., Kronland-Martinet, R., and Morlet, J.: 1989, ‘Reading and Understanding Continuous Wavelet Transforms, in: J. M. Combes, A. Grossmann, and Ph. Tchamitchian (eds.),Wavelets, Springer Verlag, pp. 1–21.Google Scholar
  20. Holland, J. Z.: 1989, ‘On Pressure-Driven Wind in Deep Forests’,J. Appl. Meteorol. 28, 1349–1355.Google Scholar
  21. Hussain, A. K. M. F.: 1983, ‘Coherent Structures-Reality and Myth’,Phys. Fluids 26, 2816–2850.Google Scholar
  22. Johansson, A. V. and Alfredsson, P. H.: 1982, ‘On the Structure of Turbulent Channel Flow’,J. Fluid Mech. 122, 285–314.Google Scholar
  23. Lenschow, D. H. and Stankov, B. B.: 1986: ‘Length Scales in the Convective Boundary Layer’,J. Atmos. Sci. 43, 1198–1209.Google Scholar
  24. Lu, C.-H.: 1993, ‘Interaction of Coherent Structure with the Forest Canopy, M.Sc. Thesis, Department of Atmospheric Sciences, State University of New York at Albany, Albany, New York, U.S.A.Google Scholar
  25. Mahrt, L.: 1991, ‘Eddy Asymmetry in the Sheared Heated Boundary Layer’,J. Atmos. Sci. 48, 472–492.Google Scholar
  26. Mahrt, L. and Frank, H.: 1988, ‘Eigenstructure of Eddy Microfronts’,Tellus 40A, 107–119.Google Scholar
  27. Meneveau, C.: 1991, ‘Dual Spectra and Mixed Energy Cascade of Turbulence in the Wavelet Representation’,Phys. Rev. Lett. 66, 1450–1453.Google Scholar
  28. Panofsky, H. A., Tennekes, H., Lenschow, D. H., and Wyngaard, J. C.: 1977, ‘The Characteristics of Turbulent Velocity Components in the Surface Layer Under Convective Conditions’,Boundary-Layer Meteorol. 11, 355–361.Google Scholar
  29. Paw U, K. T., Brunet, Y., Collineau, S., Shaw, R. H., Maitani, T., Qiu, J., and Hipps, L.: 1992, ‘On Coherent Structures in Turbulence above and within Agricultural Plant Canopies’,Agric. Forest Meteorol.,61. 55–68.Google Scholar
  30. Petersen, E. L.: 1976, ‘A Model for the Simulation of Atmospheric Turbulence’,J. Appl. Meteorol. 15, 571–587.Google Scholar
  31. Raupach, M. R., Coppin, P. A., and Legg, B. J.: 1986, ‘Experiments on Scalar Dispersion within a Model Plant Canopy, Part I: The Turbulence Structure’,Boundary-Layer Meteorol. 35, 21–52.Google Scholar
  32. Raupach, M. R., Finnigan, J. J., and Brunet, Y.: 1989, ‘Coherent Eddies in Vegetation Canopies’,Proceedings of the Fourth Australasian Conference on Heat and Mass Transfer. 9–12 May, Christchurch, New Zealand.Google Scholar
  33. Raupach, M. R., Antonia, R. A., and Rajagopalan, S.: 1991, ‘Rough-Wall Turbulent Boundary Layers’,Appl. Mech. Rev. 44, 1–25.Google Scholar
  34. Rogallo, R. S. and Moin, P.: 1984, ‘Numerical Simulation of Turbulent Flows, Annual Reviews of Fluid Mechanics’, Vol. 16, Milton Van Dyke, J. V. Wehausen, J. L. Lumley, (eds.), Annual Reviews Inc., Palo Alto, California.Google Scholar
  35. Schols, J. L. J.: 1984,: ‘The Detection and Measurement of Turbulent Structures in the Atmospheric Surface Layer’,Boundary-Layer Meteorol. 29, 39–58.Google Scholar
  36. Schols, J. L. J., Jansen, A. E., and Krom, J. G.: 1985, ‘Characteristics of Turbulent Structures in the Unstable Atmospheric Surface Layer’,Boundary-Layer Meteorol. 33, 173–196.Google Scholar
  37. Shaw, R. H., Tavangar, J., and Ward, D. P.: 1983, ‘Structure of the Reynolds Stress in a Canopy Layer’,J. Clim. Appl. Meteoreol. 22, 1922–1931.Google Scholar
  38. Shaw, R. H., den Hartog, G., and Neuman, H. H.: 1988, ‘Influence of Foliar Density and Thermal Stability on Profiles of Reynolds Stress and Turbulence Intensity in a Decidous Forest’,Boundary-Layer Meteorol. 45, 391–409.Google Scholar
  39. Shaw, R. H., Paw U., K. T., Zhang, X. J., Gao, W., den hartog, G., and Neuman, H. H.: 1990, ‘Retrieval of Turbulent Pressure Fluctuations at the Ground Surface Beneath a Forest’,Boundary-Layer Meteorol. 50, 319–338.Google Scholar
  40. Shaw, R. H. and Zhang, X. J.: 1992, ‘Evidence of Pressure-Forced Turbulent Flow in a Forest’,Boundary-Layer Meteorol. 58, 273–288.Google Scholar
  41. Sigmon, J. T., Knoerr, K. R., and Shaughnessy, E. J.: 1983, ‘Microscale Pressure Fluctuations in a Mature Deciduous Forest’,Boundary-Layer Meteorol. 27, 345–358.Google Scholar
  42. Wallace, J. M., Eckelmann, H., and Brodkey, R. S.: 1972, ‘The Wall Region in Turbulent Shear Flow’,J. Fluid Mech. 54, 39–48.Google Scholar
  43. Wilczak, J. M.: 1984, ‘Large-Scale Eddies in the Unstably Stratified Atmospheric Surface Layer, Part I: Velocity and Temperature Structure’,J. Atmos. Sci. 41, 3537–3550.Google Scholar
  44. Wilson, J. D., Ward, D. P., Thurtell, G. W., and Kidd, G. E.: 1982, ‘Statistics of Atmospheric Turbulence within and above a Corn Canopy’,Boundary-Layer Meteorol. 24, 495–519.Google Scholar
  45. Wofsy, S. C., Goulden, M. L., Munger, J. W., Fan, S.-M., Bakwin, P. S., Daube, B. C., Bassow, S. L., and Bazzaz, F. A.: 1993, ‘Net Exchange of CO2 in Midlatitude Forests’Science 260, 1314–1317.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Cheng-Hsuan Lu
    • 1
  • David R. Fitzjarrald
    • 1
  1. 1.Atmospheric Sciences Research CenterState University of New YorkAlbanyUSA

Personalised recommendations