Journal of Muscle Research & Cell Motility

, Volume 5, Issue 3, pp 333–347 | Cite as

Heterogeneity of T-tubule geometry in vertebrate skeletal muscle fibres

  • Angela F. Dulhunty


Average dimensions of transverse tubules were obtained from electron micrographs of thin sections of mammalian and amphibian skeletal muscle fibres and the effect of transverse tubule geometry on the electrical characteristics of the fibres has been considered. The preparations examined were toad sartorius, mouse soleus, rat extensor digitorum longus, soleus and sternomastoid muscles. The T-tubule dimensions varied considerably between the different preparations and the average volume to surface ratio of the transverse tubule in amphibian fibres (8.1 nm) was generally greater than that in mammalian fibres (3.0–6.2 nm). The small volume to surface ratio of the mammalian transverse tubule would tend to reduce the electrical space constant of the transverse tubule system and reduce the rate of cross-sectional activation of the fibres during a twitch contraction. The area of transverse tubule membrane in junctional contact with the sarcoplasmic reticulum was determined and was found to be greater in mammalian fibres than in amphibian fibres. The relative areas of junctional contact, along a unit length of transverse tubule, were the same in rat extensor digitorum longus and soleus fibres.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ADRIAN, R. H. & ALMERS, W. (1974) Membrane capacity measurements of frog skeletal muscle in media of low ion content.J. Physiol. 237, 573–605.Google Scholar
  2. ADRIAN, R. H., CHANDLER, W. K. & HODGKIN, A. L. (1969) The kinetics of mechanical activation in frog muscle.J. Physiol. 204, 631–58.Google Scholar
  3. ADRIAN, R. H. & PEACHEY, L. D. (1973) Reconstruction of the action potential of frog sartorius muscle.J. Physiol. 235, 103–31.Google Scholar
  4. DAUBER, W. (1978) Zur fastertypischen morphologie und funktion der triaden im skeletmuskel des frosches (Rana esculenta).Z. mikrosk. anat. Forsch. 93, 512–36.Google Scholar
  5. DAVEY, D. F. (1973) The effect of fixative tonicity on the myosin filament lattice volume of frog muscle fixed following exposure to normal or hypertonic Ringer.Histochem. J. 5, 87–104.Google Scholar
  6. DAVEY, D. F. & O'BRIEN, G. M. (1978) The sarcoplasmic reticulum and T-system of rat extensor digitorum longus muscles exposed to hypertonic solutions.Aust. J. exp. Biol. med. Sci. 56, 409–19.Google Scholar
  7. DULHUNTY, A. F. (1982) The effect of chloride withdrawal on the geometry of the T-tubules in amphibian and mammalian muscle.J. membr. Biol. 67, 81–90.Google Scholar
  8. DULHUNTY, A. F., CARTER, G. S. & HINRICHSEN, C. (1984) The membrane capacity of mammalian skeletal muscle fibres.J. Musc. Res. Cell Motility 5, 315–32.Google Scholar
  9. DULHUNTY, A. F. & GAGE, P. W. (1983) Asymmetrical charge movement in slow and fast twitch mammalian muscle fibres in normal and paraplegic rats.J. Physiol. 341, 213–31.Google Scholar
  10. EISENBERG, B. R. & EISENBERG, R. S. (1968) Selective disruption of the sarcotubular system in frog sartorius muscle. A quantitative study with exogenous peroxidase as a marker.J. Cell Biol. 39, 451–76.Google Scholar
  11. EISENBERG, B. R. & KUDA, A. M. (1976) Discrimination between fibre populations in mammalian skeletal muscle by using ultrastructural parameters.J. Ultrastruct. Res. 54, 76–88.Google Scholar
  12. EISENBERG, B. R., KUDA, A. M. & PETER, J. B. (1974) Stereological analysis of mammalian skeletal muscle. I. Soleus muscle of the adult guinea pig.J. Cell Biol. 60, 732–54.Google Scholar
  13. FRANZINI-ARMSTRONG, C. (1970) Studies of the triad. I. Structure of the junction in frog twitch fibres.J. Cell Biol. 47, 488–99.Google Scholar
  14. FRANZINI-ARMSTRONG, C. (1973) Membrane systems in muscle fibers. InStructure and Function of Muscle, Vol. 2. (edited by BOURNE, G.), 2nd edn, pp. 532–619. New York: Academic Press.Google Scholar
  15. GAGE, P. W. & DULHUNTY, A. F. (1981) Upper motor neurone modulation of charge movement and mechanical activation in rat skeletal muscle fibres.Neurosci. Lett. 27, 271–6.Google Scholar
  16. HINRICHSEN, C. & DULHUNTY, A. F. (1982) The contractile properties, histochemistry, ultrastructure and electrophysiology of the cricothyroid and posterior cricoarytenoid muscles in the rat.J. Musc. Res. Cell Motility 3, 169–90.Google Scholar
  17. HODGKIN, A. L. & NAKAJIMA, S. (1972) Analysis of the membrane capacity in frog muscle.J. Physiol. 221, 121–36.Google Scholar
  18. HOLLINGWORTH, S. & MARSHALL, M. W. (1981) A comparative study of charge movement in mammalian skeletal muscle fibres.J. Physiol. 321, 583–602.Google Scholar
  19. MOBLEY, B. & EISENBERG, B. (1975) Sizes of components in frog skeletal muscle measured by methods of stereology.J. gen. Physiol. 66, 31–45.Google Scholar
  20. PEACHEY, L. D. (1965) The sarcoplasmic reticulum and transverse tubules of the frogs sartorius.J. Cell Biol. 25, 209–31.Google Scholar
  21. PEACHEY, L. D. & SCHILD, R. F. (1968) The distribution of the T-system along the sarcomeres of frog and toad sartorius muscles.J. Physiol 194, 249–58.Google Scholar
  22. RAYNES, D. G., SIMPSON, F. O. & BERTRAUD, W. S. (1968) Surface features of striated muscle. II. Guinea pig skeletal muscle.J. Cell Sci. 3, 475–88.Google Scholar
  23. SCHMALBRUCH, H. (1979) The membrane systems in different fibre types of the triceps surae muscle of cat.Cell Tiss. Res. 204, 187–200.Google Scholar
  24. SCHNEIDER, M. F. & CHANDLER, W. K. (1973) Voltage dependent charge movement in skeletal muscle: a possible step in excitation-contraction coupling.Nature 242, 224–46.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1984

Authors and Affiliations

  • Angela F. Dulhunty
    • 1
  1. 1.Department of AnatomyUniversity of SydneyAustralia

Personalised recommendations