LYC1 is the structural gene for lysine N-6-acetyl transferase in yeast
- 54 Downloads
- 2 Citations
Abstract
In the yeastYarrowia lipolytica, theLYC1 locus controls the first step of the lysine degradation pathway which is catalyzed by lysine N-6-acetyl transferase (LAT). This gene was cloned by complementation of thelyc1-100 mutation. Its position in the cloned insert was determined by conversion mapping and by complementation. TheLYC1 gene encodes a 391 amino-acid polypeptide which has no homolog in protein databases. The required upstream region extends over 960 bp. When placed under the control of theGAL10 promoter inSaccharomyces cerevisiae, LYC1 drives the expression of lysine acetyl transferase activity, thus providing strong evidence that it is the structural gene encoding this enzyme.
Key words
Yeast Yarrowia lipolytica Lysine acetyl transferase Lysine catabolismPreview
Unable to display preview. Download preview PDF.
References
- Beckerich JM, Colonna-Ceccaldi B, Lambert M, Hoslot H (1984) Curr Genet 8:531–536Google Scholar
- Beckerich JM, Pommies E, Faivre C, Lambert M, Heslot H (1986) Biochimie 68:517–529Google Scholar
- Bradford MM (1976) Anal Biochem 72:248–254Google Scholar
- Broach JR, Li YY, Wu LCC, Jayaram M (1983) Vectors for high-level inducible expression of cloned gene in yeast. In: Inouye M (ed) Experimental manipulation of gene expression. Academic Press, New York, pp 83–115Google Scholar
- Brown K, Finch PW, Hickson ID, Emmerson PT (1987) Nucleic Acids Res 15:10586Google Scholar
- Davidow LS, Apostolakos D, O'Donnell MM, Proctor AR, Ogrydziak DM, Wing RA, Stasko I, DeZeeuw JR (1985) Curr Genet 10:39–48Google Scholar
- Davidow LS, Kaczmarek, De Zeeuw JR, Conlon SW, Lauth MR, Pereira DA, Franke AE (1987 a) Curr Genet 11:377–383Google Scholar
- Davidow LS, O'Donnell MM, Kaczmarek FS, Pereira DA, DeZeeuw JR, Franke AE (1987 b) J Bacteriol 169:4621–4629Google Scholar
- Denk D, Bock A (1987) J Gen Microbiol 133:515–525Google Scholar
- Devereux J, Haeberli P, Smithies O (1984) Nucleic Acids Res 12:387–395Google Scholar
- Fournier P, Guyaneux L, Chasles M, Gaillardin C (1991) Yeast 7:25–36Google Scholar
- Gaillardin CM, Charoy V, Heslot H (1973) Arch Microbiol 92:69–83Google Scholar
- Gaillardin CM, Fournier P, Sylvestre G, Heslot H (1976) J Bacteriol 125:48–57Google Scholar
- Gaillardin CM, Poirier L, Ribet AM, Heslot H (1979) Biochimie 61:473–482Google Scholar
- Gaillardin C, Ribet AM (1987) Curr Genet 11:369–375Google Scholar
- Hammer T, Bode R, Schmidt H, Birnbaum D (1991) J Basic Microbiol 31:43–49Google Scholar
- Hunt PJ, Dingemanse MA, Kuyvenhoven A, Soede RDM, Pouwels PH, Van Den Hondel CAMJJ (1990) Gene 93:101–109Google Scholar
- McNeil JB (1988) Mol Cell Biol 8:1045–1054Google Scholar
- Meilhoc E, Masson JM, Teissié J (1990) Bio/technology 8:223–227Google Scholar
- Mullen JR, Kayne PS, Moerschell RP, Tsunasawa S, Gribskov M, Colavito-Shepanski M, Grunstein M, Sherman F, Sternglanz R (1989) EMBO J 8:2067–2075Google Scholar
- Needleman S, Wünsch C (1970) J Mol Biol 48:443–453Google Scholar
- Nicaud JM, Fabre E, Beckerich JM, Fournier P, Gaillardin C (1989) J Biotechnol 12:285–298Google Scholar
- Pearson WR, Lipman DJ (1988) Proc Natl Acad Sci USA 85:2444–2448Google Scholar
- Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
- Sanger F, Nicklen S, Coulson AR (1977) Proc Natl Acad Sci USA 74:5463–5467Google Scholar
- Xuan JW, Fournier P, Gaillardin C (1988) Curr Genet 14:15–21Google Scholar
- Zhang H, Scholl R, Browse J, Somerville C (1988) Nucleic Acids Res 16:1220Google Scholar