Advertisement

Journal of Atmospheric Chemistry

, Volume 21, Issue 1, pp 81–95 | Cite as

Solubility of HOCl in water and aqueous H2SO4 to stratospheric temperatures

  • T. Huthwelker
  • Th. Peter
  • B. P. Luo
  • S. L. Clegg
  • K. S. Carslaw
  • P. Brimblecombe
Article

Abstract

Henry's law constants K′H (mol kg−1 atm−1) for the reaction HOCl(g)=HOCl(aq) near room temperature, literature data for the associated enthalpy change, and solubilities of HOCl in aqueous H2SO4 (46 to 60 wt%) at temperatures relevant to the stratosphere (200 K≤T≤230 K) are shown to be thermodynamically consistent. Effective Henry's law constants [H*=mHOCl/pHOCl, in mol kg−1 atm−1] of HOCl in aqueous H2SO4 are given by: ln(H*)=6.4946−mH2SO4(−0.04107+54.56/T)−5862 (1/To−1/T) where T(K) is temperature and To=298.15K. The activity coefficient of HOCl in aqueous H2SO4 has a simple Setchenow-type dependence upon H2SO4 molality.

Key words

Hypochlorous acid Henry's law stratospheric aerosol solubility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blatchley, E. R., Johnson, R. W., Alleman, J. E., and McCoy, W. F., 1992, Effective Henry's law constants for free chlorine and free bromine,Water Res. 26, 99–106.Google Scholar
  2. Brasseur, G. and Solomon, S., 1986,Aeronomy of the Middle Atmosphere, D. Reidel Publ. Co., Dordrecht.Google Scholar
  3. Carslaw, K. S., Luo, B. P., Clegg, S. L., Peter, Th., Brimblecombe, P., and Crutzen, P. J., 1994, Stratospheric aerosol growth and HNO3 gas phase depletion from coupled HNO3 and water uptake by liquid particles.Geophys. Res. Lett. 21, 2479–2482.Google Scholar
  4. Chase, M. W. (ed.), 1985, JANAF Thermochemical Tables,J. Phys. Chem. Ref. Data 14, Suppl. No. 1.Google Scholar
  5. Cox, R. A., MacKenzie, A. R., Muller, R. H., Peter, Th., and Crutzen, P. J., 1994, Activation of stratospheric chlorine by reaction in liquid sulphuric acid,Geophys. Res. Lett. 21, 1439–1442.Google Scholar
  6. CRC Handbook of Chemistry and Physics, Weast, R. C., (ed.), 1983, 64th Edition, CRC Press, Boca Raton, Florida.Google Scholar
  7. Hanson, D. R. and Ravishankara, A. R., 1991a, The reaction probabilities of ClONO2 and N2O5 on 40 to 75 percent sulphuric acid solutions,J. Geophys. Res. 96, 17307–17314.Google Scholar
  8. Hanson, D. R. and Ravishankara, A. R., 1991b, The reaction probabilities of ClONO2 and N2O5 on polar stratospheric cloud materials,J. Geophys. Res. 96, 5081–5090.Google Scholar
  9. Hanson, D. R. and Ravishankara, A. R., 1993, Uptake of HCl and HOCl onto sulphuric acid: solubilities, diffusivities and reaction,J. Phys. Chem. 97, 12309–12319.Google Scholar
  10. Holzwarth, G., Balmer, R. G., and Soni, L., 1984, The fate of chlorine and chloramines in cooling towers. Henry's law constants for flashoff,Water Res. 18, 1421–1427.Google Scholar
  11. Houghton, G., 1964, Cubic cell model for diffusion in liquids,J. Chem. Phys. 40, 1628–1631.Google Scholar
  12. Long, F. A. and McDevit, W. F., 1952, Activity coefficients of nonelectrolyte solutes in aqueous salt solutions,Chem. Rev. 51, 119–169.Google Scholar
  13. Luo, B. P., Clegg, S. L., Peter, Th., Muller, R., and Crutzen, P. J., 1994, HCl solubility and liquid diffusion in aqueous sulphuric acid under stratospheric conditions,Geophys. Res. Lett. 21, 49–52.Google Scholar
  14. Masterton, W. L. and Lee, T. P., 1970, Salting coefficients from scaled particle theory,J. Phys. Chem. 74, 1776–1782.Google Scholar
  15. Moelwyn-Hughes, E. A., 1961,Physical Chemistry, 2nd Edn., Pergamon Press, Oxford.Google Scholar
  16. Ourisson, J. and Kastner, M., 1939, Determination des tensions de vapeurs des solutions d'acids hypochloreux a 10° et 20 °C,Bull. Soc. Chim. France (Series 5) 6, 1307–1311.Google Scholar
  17. Pitzer, K. S., 1991, Ion interaction approach: Theory and data correlation, in Pitzer, K. S. (ed.),Activity Coefficients in Electrolyte Solutions, 2nd edn., pp. 75–153, CRC Press, Boea Raton.Google Scholar
  18. Sandler, S. I., 1989,Chemical and Engineering Thermodynamics, Wiley and Sons, New York.Google Scholar
  19. Söhnel, O. and Novotný, P., 1985,Densities of Aqueous Solutions of Inorganic Substances, Elsevier, Amsterdam.Google Scholar
  20. Stull, D. R. and Prophet, H. (eds.), 1971,JANAF Thermochemical Tables, 2nd edn, U.S. Govt. Printing Office, Washington, DC.Google Scholar
  21. Tabazadeh, A., Turco, R. P., and Jacobson, M. Z., 1994, A model for studying the composition and chemical effects of stratospheric aerosols,J. Geophys. Res. 99, 12897–12914.Google Scholar
  22. Toon, G. C., Farmer, C. B., Schaper, P. W., Lowes, L. L., and Norton, R. H., 1992, Composition measurements of the 1989 Arctic winter stratosphere by airborne infrared solar absorption spectroscopy,J. Geophys. Res. 97, 7939–7962.Google Scholar
  23. Wagman, D. D., Evans, W. H., Parker, V. B., Schumm, I. H., Bailey, S. M., Churney, K. L., and Nuttall, R. L., 1982, The NBS tables of chemical thermodynamic properties,J. Phys. Chem. Ref. Data 11, 392 pp.Google Scholar
  24. Williams, L. R. and Golden, D. M., 1993, Solubility of HCl in sulphuric acid at stratospheric temperatures,Geophys. Res. Lett. 20, 2227–2230.Google Scholar
  25. Williams, L. R. and Long, F. S., 1995, Viscosity of supercooled sulphuric acid solutions.J. Phys. Chem. 99, 3748–3751.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • T. Huthwelker
    • 1
  • Th. Peter
    • 1
  • B. P. Luo
    • 1
  • S. L. Clegg
    • 2
  • K. S. Carslaw
    • 2
  • P. Brimblecombe
    • 2
  1. 1.Max Planck Institut für ChemieMainzGermany
  2. 2.School of Environmental SciencesUniversity of East AngliaNorwichU.K.

Personalised recommendations