Advertisement

Boundary-Layer Meteorology

, Volume 74, Issue 3, pp 289–312 | Cite as

Turbulence characteristics and organized motion in a suburban roughness sublayer

  • Susumu Oikawa
  • Yan Meng
Article

Abstract

To investigate tubulence characteristics and organized motion within and above an urban canopy, field observations were conducted in July 1991 and November 1992 in Sapporo, Japan. The measurement heights were 5.4, 10.3, 18, 35 and 45 m above ground; the canopy height was 7 m. The profiles of σu peaked slightly above the canopy, while σv and σw had nearly uniform profiles. Vertical profiles of Reynolds stress -\(\overline {u'w'} \) peaked slightly at 1.5 times the canopy height and decreased slowly with height thereafter. A four-quadrant analysis showed that sweep and ejection motions caused high-velocity fluid from above moves downward toward the surface and low-velocity fluid from below moves upward. An ensemble-averaging technique was used to isolate typical features of the flow and temperature fields. A time-height cross-section of velocity vectors and temperature contours showed details of the flow structures associated with temperature ramps. It has been noted that the organized motions play important roles in the transport of heat near the urban canopy, where the sweep motion causes negative temperature fluctuations and the ejection motion causes positive temperature fluctuations.

Keywords

Flow Structure Vertical Profile Temperature Fluctuation Reynolds Stress Measurement Height 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antonia, R. A., Chambers, A. J., Friehe, C. A., and Van Atta, C. W.: 1979, ‘Temperature Ramps in the Atmospheric Surface Layer’,J. Atmos. Sci. 36, 99–108.Google Scholar
  2. Bergström, H., and Högström, U.: 1989, ‘Turbulent Exchange above a Pine Forest. II. Organized Structures’,Boundary-Layer Meteorol. 49, 231–263.Google Scholar
  3. Bowne, N. E. and Ball, J. T.: 1970, ‘Observational Comparison of Rural and Urban Boundary Layer Turbulence’,J. Applied Meteorol. 9, 862–873.Google Scholar
  4. Brook, R. R.: 1972, ‘The Measurement of Turbulence in a City Environment’,J. Applied Meteorol. 11, 443–450.Google Scholar
  5. Clarke, J. F., Ching, J. K. S., and Godowich, J. M.: 1982, ‘An Experimental Study of Turbulence in an Urban Environment’, EPA-600/3-82-062, 167 pp.Google Scholar
  6. Counihan, J.: 1971, ‘Wind Tunnel Determination of the Roughness Length as a Function of the Fetch and Density of Three-dimensional Roughness Elements’,Atmos. Environ. 5, 637–642.Google Scholar
  7. Duckworth, F. S. and Sandberg, J. S.: 1954, ‘The Effect of Cities upon Horizontal and Vertical Temperature Gradient’,Bull. Am. Meteorol. Soc. 35, 198–207.Google Scholar
  8. Finnigan, J. J.: 1979, ‘Turbulence in Waving Wheat. II Structure of Momentum Transfer’,Boundary-Layer Meteorol. 16, 213–236.Google Scholar
  9. Gao, W., Shaw, R. H., and Paw, U. K. T.: 1989, ‘Observation of Organized Structure in Turbulent Flow within and above a Forest Canopy’,Boundary-Layer Meteorol. 47, 349–377.Google Scholar
  10. Garratt, J. R.: 1978, ‘Flux Profile Relations above Tall Vegetation’,Ouart. J. Roy. Meteorol. Soc. 104, 199–211.Google Scholar
  11. Garratt, J. R.: 1980, ‘Surface Influence upon Vertical Profiles in the Atmospheric Near-Surface Layer’,Quart. J. Roy. Meteorol. Soc. 106, 803–819.Google Scholar
  12. Graham, I. J.: 1968, ‘An Analysis of Turbulence Statistics at Fort Wayne, Indiana’,J. Applied Meteorol. 7, 90–93.Google Scholar
  13. Grant, A. L. M. and Watkins, R. D.: 1989, ‘Errors in Turbulence Measurements with a Sonic Anemometer’,Boundary-Layer Meteorol. 46, 181–194.Google Scholar
  14. Grass, A. J.: 1971, ‘Structural Features of Turbulent Flow over Smooth and Rough Boundaries’,J. Fluid Mech. 50, 233–255.Google Scholar
  15. Högström, U., Bergström, H., and Alexandersson, H.: 1982, ‘Turbulence Characteristics in a Near Neutrally Stratified Urban Atmosphere’,Boundary-Layer Meteorol. 23, 449–472.Google Scholar
  16. Hanafusa, T., Fujitani, T., Kobori, Y., and Mitsuta, Y.: 1982, ‘A New Type Sonic Anemometer-Thermometer for Field Operation’,Pap. Meteorol. Geophys. 33, 1–19.Google Scholar
  17. Hanafusa, T., Fujitani, T., Kobori, Y., and Yoshida, M.: 1983, ‘Wind Measurement by a Strong Wind-Type of Three Sonic Anemometer-Thermometers’,Annual Meeting of Japan Society of Meteorol. Autumn, P99 (in Japanese).Google Scholar
  18. Jackson, P. S.: 1978, ‘Wind Structure Near a City Center’,Boundary-Layer Meteorol. 15, 323–340.Google Scholar
  19. Kanda, M. and Hino, M.: 1994, ‘Organized Structures Developing Turbulent Flow within and above a Plant Canopy, using a Large Eddy Simulation’,Boundary-Layer Meteorol. 68, 237–257.Google Scholar
  20. Kaimal, J. C. and Gaynor, J. E.: 1983, ‘The Boulder Atmospheric Observatory’,J. Climate Appl. Meteorl. 22, 863–880.Google Scholar
  21. Kline, S. J., Reynolds, W. C., Schraub, F. A., and Rundstadler, P. W.: 1967, ‘The Structure of Turbulent Boundary Layers’,J. Fluid Mech. 30, 741–773.Google Scholar
  22. Lettau, H.: 1969, ‘Note on Aerodynamic Roughness-Parameter Estimation on the Basic of Roughness-Element Description’,J. Applied Meteorol. 8, 828–832.Google Scholar
  23. Lu, S. S. and Willmarth, W. W.: 1973, ‘Measurements of the Structure of the Reynolds Stress in a Turbulent Boundary Layer’,J. Fluid Mech. 60, 481–511.Google Scholar
  24. Meng, Y., Oikawa, S., and Wakamatsu, S.: 1993, ‘Coherent Structure in and above the Urban Canopy’,Proc. 25th Conf. on Turbulence, Japan. Soc. Fluid Mech. 47–50 (in Japanese).Google Scholar
  25. Nakagawa, H. and Nezu, I.: 1977, ‘Prediction of the Contributions to the Reynolds Stress from Bursting Events in Open-channel Flows’,J. Fluid Mech. 80, 99–128.Google Scholar
  26. Ogawa, Y. and Ohara, T.: 1982, ‘Observation of the Turbulent Structure in the Planetary Boundary Layer with a Kytoon-mounted Ultrasonic Anemometer System’,Boundary-Layer Meteorol. 22, 123–131.Google Scholar
  27. Ogawa, Y., Ohara, T., Wakamatsu, S., Diosey, P.G., and Uno, I.,: 1986, ‘Observation of Lake Breeze Penetration and Subsequent Development of the Thermal Internal Boundary Layer for the Nanticoke II Shoreline Diffusion Experiment’,Boundary-Layer Meteorol. 35, 207–230.Google Scholar
  28. Ohara, T., Uno, I., and Wakamatsu, S.: 1989, ‘Observed Structure of a Land Breeze Head in the Tokyo Metropolitan Area’,J. Applied Meteorol. 28, 693–704.Google Scholar
  29. Oikawa, S.: 1993, ‘Vertical Turbulence Structure in and above the Urban Canopy’,J. Japan Society of Air Pollution,28, 348–358 (in Japanese).Google Scholar
  30. Oke, T. R.: 1976, ‘The Distinction between Canopy and Boundary-Layer Urban Heat Island’,Atmosphere 14, 269–277.Google Scholar
  31. Oke, T. R.: 1987, ‘Boundary Layer Climates’, Routledge, 435 pp.Google Scholar
  32. Panofsky, H. A. and Dutton, J. A.: 1984, ‘Atmospheric Turbulence’, J. Wiley, New York, 397 pp.Google Scholar
  33. Raupach, M. R., Thom, A. S., and Edwards, I.: 1980, ‘A Wind-tunnel Study of Turbulent Flow Close to Regularly Arranged Rough Surfaces’,Boundary-Layer Meteorol. 18, 373–397.Google Scholar
  34. Raupach, M. R., Coppin, P. A., and Legg, B. J.: 1986, ‘Experiments on Scalar Dispersion within a Model Plant Canopy. Part I: The Turbulence Structure’,Boundary-Layer Meteorol. 35, 21–52.Google Scholar
  35. Raupach, M. R.: 1989, ‘Stand Overstorey Processes’,Phil. Trans. R. Soc. Lond.,B324, 175–190.Google Scholar
  36. Raupach, M. R., Finnigan, J. J., and Brunet, Y.: 1989, ‘Coherent Eddies in Vegetation Canopies’,Proc. Fourth Australasian Conf. on Heat and Mass Transfer, Christchurch, New Zealand, 75–90.Google Scholar
  37. Reynolds, W. C. and Hussain, A. K. M. F.: 1972, ‘The Mechanics of an Organized Wave in Turbulent Shear Flow. Part 3. Theoretical Models and Comparisons with Experiments’,J. Fluid Mech. 54, 263–288.Google Scholar
  38. Rotach, M. W.: 1991, ‘Turbulence within and above Urban Canopy’, ETH Technical Report 45, Geogra. Inst. E. T.H., Zurich, 245 pp.Google Scholar
  39. Rotach, M. W.: 1993a, ‘Turbulence Close to a Rough Urban Surface. Part I: Reynolds Stress’,Boundary-Layer Meteorol. 65, 1–28.Google Scholar
  40. Rotach, M. W.: 1993b, ‘Turbulence Close to a Rough Urban Surface. Part II: Variances and Gradients’,Boundary-Layer Meteorol. 66, 75–92.Google Scholar
  41. Roth, M.: 1993, ‘Turbulent Transfer Relationships over an Urban Surface. II: Integral Statistics’,Quart. J. Royal Meteorol. Soc. 119, 1105–1120.Google Scholar
  42. Roth, M. and Oke, T. R.: 1993, ‘Turbulent Transfer Relationships over an Urban Surface. I: Spectral Characteristics’,Quart. J. Royal Meteorol. Soc. 119, 1071–1104.Google Scholar
  43. Shiotani, M. and Yamamoto, G.: 1950, ‘Atmospheric Turbulence over the Large City’,Geophys. Mag. 2, 134–147.Google Scholar
  44. Steyn, D. G.: 1982, ‘Turbulence in an Unstable Surface Layer over Suburban Terrain’,Boundary-Layer Meteorol. 22, 183–191.Google Scholar
  45. Tutu, N. K. and Chevray, R.: 1975, ‘Cross-wire Anemometry in High Intensity Turbulence’,J. Fluid Mech. 71, 785–800.Google Scholar
  46. Uno, I., Wakamatsu, S., Ueda, H., and Nakamura, A.: 1988, ‘An Observational Study of the Structure of the Nocturnal Urban Boundary Layer’,Boundary-Layer Meteorol. 45, 59–82.Google Scholar
  47. Wallace, J. M., Eckelmann, H., and Brodkey, R. S.: 1972, ‘The Wall Region in Turbulent Shear Flow’,J. Fluid Mech. 54, 39–48.Google Scholar
  48. Wyngaard, J. C., Coté, O. R., and Izumi, Y.: 1971, ‘Local Free Convection, Similarity and the Budgets of Shear Stress and Heat Flux’,J. Atmos. Sciences 28, 1171–1182.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Susumu Oikawa
    • 1
  • Yan Meng
    • 1
  1. 1.Environmental Engineering Department, Institute of TechnologySHIMIZU CORPORATIONTokyoJapan

Personalised recommendations