Journal of Muscle Research & Cell Motility

, Volume 4, Issue 5, pp 589–609 | Cite as

The effect of platelet-derived growth factor on morphology and motility of human glial cells

  • Karin Mellström
  • Anna-Stina Höglund
  • Monica Nistér
  • Carl-Henrik Heldin
  • Bengt Westermark
  • Uno Lindberg


Platelet-derived growth factor (PDGF) is a mitogen for several cell types in culture. It is documented in this work that one of the earliest effects of PDGF on serum-starved glial cells is an induction of intensive motile activity. Within the first minute after the addition of PDGF thin membrane lamellae grow out around almost all of the cell circumference. Later, circular arrangements of small ruffles appear on the dorsal surface of the cells. These rings of ruffles vary in size and some encircle almost the whole cell. The organization of the peripheral weave of microfilaments in the PDGF-induced advancing lamellae was closely similar to that of normally growing cells. In the regions of the circular arrangements of ruffles there was an extensive reorganization of the surface actin with unusual arrangements of microfilament bundles and polygonal networks. There was also a general intensification of the translocation of membrane ruffles and spikes from the cell periphery towards the centre of the cell, increased micropinocytotic activity and shuttling of intracellular particles.


Glial Cell Early Effect Dorsal Surface Cell Periphery Thin Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ABERCROMBIE, M., HEAYSMAN, J. E. M. & PEGRUM, S. M. (1970) The locomotion of fibroblasts in culture. III. Movements of particles on the dorsal surface of the leading lamella.Expl Cell Res. 62, 389–98.Google Scholar
  2. ALBRECHT-BUEHLER, G. & GOLDMAN, R. D. (1976) Microspike-mediated particle transport towards the cell body during early spreading of 3T3 cells.Expl Cell Res. 97, 329–39.Google Scholar
  3. ALBRECHT-BUEHLER, G. & LANCASTER, R. M. (1976) A quantitative description of the extension and retraction of surface protrusions in spreading 3T3 mouse fibroblasts.J. Cell Biol. 71, 370–82.Google Scholar
  4. AMBROS, V. R., CHEN, L. B. & BUCHANAN, J. M. (1975) Surface ruffles as markers for studies of cell transformation by Rous sarcoma virus.Proc. natn. Acad. Sci. 72, 3144–8.Google Scholar
  5. ANTONIADES, H. N. (1981) Human platelet-derived growth factor (PDGF): Purification of PDGF-I and PDGF-II separation of their reduced subunits.Proc. natn. Acad. Sci. 78, 7314–7.Google Scholar
  6. ANTONIADES, H. N., SCHER, C. D. & STILES, C. D. (1979) Purification of human platelet-derived growth factor.Proc. natn. Acad. Sci. 76, 1809–13.Google Scholar
  7. BELLAIRS, R., CURTIS, A. & DUNN, G. (editors) (1982)Cell Behaviour. A Tribute To Abercrombie. Cambridge: Cambridge University Press.Google Scholar
  8. BOSCHEK, C. B., JOCKUSCH, B. M., FRIIS, R. R., BACK, R., GRUNDMANN, E. & BAUER, H. (1981) Early changes in the distribution and organization of microfilament proteins during cell transformation.Cell 24, 175–84.Google Scholar
  9. BOWEN-POPE, D. F. & ROSS, R. (1982) Platelet-derived growth factor. Specific binding to cultured cells.J. biol. Chem. 257, 5161–71.Google Scholar
  10. BRAGINA, E. E., VASILIEV, Ju. M. & GELFAND, I. M. (1976) Formation of bundles of microfilaments during spreading of fibroblasts on the substrate.Expl Cell Res. 97, 241–8.Google Scholar
  11. BRUNK, U., SCHELLENS, J. & WESTERMARK, B. (1976) Influence of epidermal growth factor (EGF) on ruffling activity, pinocytosis, and proliferation of cultivated human glia cells.Expl Cell Res. 103, 295–302.Google Scholar
  12. BURRIDGE, K. & FERAMISCO, J. R. (1980) Microinjection and localization of a 130K protein in living fibroblasts: a relationship to actin and fibronectin.Cell 19, 587–95.Google Scholar
  13. CARLSSON, L. (1979) Cell motility; the possible role of unpolymerized actin.Acta universitatis upsaliensis 537, 1–65.Google Scholar
  14. CARPENTER, G. & COHEN, S. (1976)125I-labeled human epidermal growth factor. Binding, internalization, and degradation in human fibroblasts.J. Cell Biol. 71, 159–71.Google Scholar
  15. CHINKERS, M. & COHEN, S. (1981) Purified EGF receptor-kinase interacts specifically with antibodies to Rous sarcoma virus transforming protein.Nature 290, 516–9.Google Scholar
  16. CHINKERS, M., McKANNA, J. A. & COHEN, S. (1979) Rapid induction of morphological changes in human carcinoma cells A-431 by epidermal growth factor.J. Cell Biol. 83, 260–5.Google Scholar
  17. CHINKERS, M., McKANNA, J. A. & COHEN, S. (1981) Rapid rounding of human epidermoid carcinoma cells A-431 induced by epidermal growth factor.J. Cell Biol. 88, 422–9.Google Scholar
  18. COHEN, S., CARPENTER, G. & KING, L. Jr. (1980) Epidermal growth factor-receptor-protein kinase interactions. Co-purification of receptor and epidermal growth factor-enhanced phosphorylation activity.J. biol. Chem. 255, 4834–42.Google Scholar
  19. COLLINS, V. P., ARBORGH, B. & BRUNK, U. (1977) A comparison of the effects of three widely used glutaraldehyde fixatives on cellular volume and structure.Acta path. microbiol. scand. A 85, 157–68.Google Scholar
  20. COOPER, J. A., BOWEN-POPE, D. F., RAINES, E., ROSS, R. & HUNTER, T. (1982) Similar effects of platelet-derived growth factor and epidermal growth factor on the phosphorylation of tyrosine in cellular proteins.Cell 31, 263–73.Google Scholar
  21. DEUEL, T. F., HUANG, J. S., PROFFITT, R. T., BAENZIGER, J. U., CHANG, D. & KENNEDY, B. B. (1981) Human platelet-derived growth factor. Purification and resolution into two active protein fractions.J. biol. Chem. 256, 8896–9.Google Scholar
  22. DEUEL, T. F., SENIOR, R. M., HUANG, J. S. & GRIFFIN, G. L. (1982) Chemotaxis of monocytes and neutrophils to platelet-derived growth factor.J. clin. Invest. 69, 1046–9.Google Scholar
  23. EK, B. & HELDIN, C.-H. (1982) Characterization of a tyrosine-specific kinase activity in human fibroblast membranes stimulated by platelet-derived growth factor.J. biol. Chem. 257, 10486–92.Google Scholar
  24. EK, B., WESTERMARK, B., WASTESON, Å. & HELDIN, C.-H. (1982) Stimulation of tyrosine-specific phosphorylation by platelet-derived growth factor.Nature 295, 419–20.Google Scholar
  25. GEIGER, B. (1979) A 130K protein from chicken gizzard: Its localization at the termini of microfilament bundles in cultured chicken cells.Cell 18, 193–205.Google Scholar
  26. GEIGER, B., TOKUYASU, K. T., DUTTON, A. H. & SINGER, S. J. (1980) Vinculin, an intracellular protein localized at specialized sites where microfilament bundles terminate at cell membranes.Proc. natn. Acad. Sci. U.S.A. 77, 4127–31.Google Scholar
  27. GILMER, T. M. & ERIKSON, R. L. (1981) Rous sarcoma virus transforming protein, p60src, expressed in E. coli, functions as a protein kinase.Nature 294, 771–3.Google Scholar
  28. GLEEN, K., BOWEN-POPE, D. F. & ROSS, R. (1982) Platelet-derived growth factor. III. Identification of a platelet-derived growth factor receptor by affinity labeling.J. biol. Chem. 257, 5172–6.Google Scholar
  29. GORDEN, P., CARPENTIER, J.-L., COHEN, S. & ORCI, L. (1978) Epidermal growth factor: Morphological demonstration of binding, internalization, and lysosomal association in human fibroblasts.Proc. natn. Acad. Sci. 75, 5025–9.Google Scholar
  30. GROTENDORST, G. R., SEPPÄ, H. E. S., KLEINMAN, H. K. & MARTIN, G. R. (1981) Attachment of smooth muscle cells to collagen and their migration toward platelet-derived growth factor.Proc. natn. Acad. Sci. 78, 3669–72.Google Scholar
  31. HAIGLER, H. T., McKANNA, J. A. & COHEN, S. (1979) Direct visualization of the binding and internalization of a ferritin conjugate of epidermal growth factor in human carcinoma cells A-431.J. Cell Biol. 81, 382–95.Google Scholar
  32. HAM, R. G. & McKEEHAN, W. L. (1979) Media and growth requirements. InMethods of Enzymology, Vol. LVIII. pp. 44–93. New York, London: Academic Press.Google Scholar
  33. HELDIN, C.-H., WESTERMARK, B. & WASTESON, Å. (1979) Platelet-derived growth factor: Purification and partial characterization.Proc. natn. Acad. Sci. 76, 3722–6.Google Scholar
  34. HELDIN, C.-H., WASTESON, Å. & WESTERMARK, B. (1980) Growth of normal human glial cells in a defined medium containing platelet-derived growth factor.Proc. natn. Acad. Sci. 77, 6611–5.Google Scholar
  35. HELDIN, C.-H., WASTESON, Å. & WESTERMARK, B. (1982) Interaction of platelet-derived growth factor with its fibroblast receptor. Demonstration of ligand degradation and receptor modulation.J. biol. Chem. 257, 4216–21.Google Scholar
  36. HELDIN, C.-H., WESTERMARK, B. & WASTESON, Å. (1981a) Platelet-derived growth factor. Isolation by a large-scale procedure and analysis of subunit composition.Biochem. J. 193, 907–13.Google Scholar
  37. HELDIN, C.-H., WESTERMARK, B. & WASTESON, Å. (1981b) Specific receptors for platelet-derived growth factor on cells derived from connective tissue and glia.Proc. natn. Acad. Sci 78, 3664–8.Google Scholar
  38. HERMAN, I. M., CRISONA, N. J. & POLLARD, T. D. (1981) Relation between cell activity and the distribution of cytoplasmic actin and myosin.J. Cell Biol. 90, 84–91.Google Scholar
  39. HÖGLUND, A.-S., KARLSSON, R., ARRO, E., FREDRIKSSON, B.-A. & LINDBERG, U. (1980) Visualization of the peripheral weave of microfilaments in glia cells.J. Musc. Res. Cell Motility 1, 127–46.Google Scholar
  40. HUANG, J. S., HUANG, S. S., KENNEDY, B. & DEUEL, T. F. (1982) Platelet-derived growth factor. Specific binding to target cells.J. biol. Chem. 257, 8130–6.Google Scholar
  41. HUNTER, T. & SEFTON, B. M. (1980) Transforming gene product of Rous sarcoma virus phosphorylates tyrosine.Proc. natn. Acad. Sci. U.S.A. 77, 1311–5.Google Scholar
  42. HUNTER, W. M. & GREENWOOD, F. C. (1962) Preparation of iodine-131 labelled human growth hormone of high specific activity.Nature 194, 495–6.Google Scholar
  43. JOCKUSCH, B. M. & ISENBERG, G. (1981) Interaction of α-actinin and vinculin with actin: Opposite effects on filament network formation.Proc. natn. Acad. Sci. U.S.A. 78, 3005–9.Google Scholar
  44. JOHNSSON, A., HELDIN, C.-H., WESTERMARK, B. & WASTESON, Å. (1982) Platelet-derived growth factor: Identification of constituent polypeptide chains.Biochem. biophys. Res. Commun. 104, 66–74.Google Scholar
  45. KAPLAN, D. R., CHAO, F. C., STILES, C. D., ANTONAIDES, H. N. & SCHER, C. D. (1979) Platelet α-granules contain a growth factor for fibroblasts.Blood 53, 1043–52.Google Scholar
  46. KAWAMURA, A., Jr. (1969)Fluorescent Antibody Techniques and Their Applications. Tokyo: University of Tokyo Press.Google Scholar
  47. KING, A. C. & CUATRECASAS, P. (1981) Peptide hormone-induced receptor mobility, aggregation, and internalization.New Engl. J. Med. 305, 77–88.Google Scholar
  48. LAZARIDES, E. (1976) Actin, α-actinin, and tropomyosin interaction in the structural organization of actin filaments in nonmuscle cells.J. Cell Biol. 68, 202–19.Google Scholar
  49. LINDBERG, U., HÖGLUND, A. S. & KARLSSON, R. (1981) On the ultrastructural organization of the microfilament system and the possible role of profilactin.Biochimie 63, 307–23.Google Scholar
  50. NISHIMURA, J., HUANG, J. S. & DEUEL, T. F. (1982) Platelet-derived growth factor stimulates tyrosine-specific protein kinase activity in Swiss mouse 3T3 cell membranes.Proc. natn. Acad. Sci. 79, 4303–7.Google Scholar
  51. OSBORN, M. & WEBER, K. (1977) The detergent-resistant cytoskeleton of tissue culture cells includes the nucleus and the microfilament bundles.Expl Cell Res. 106, 339–49.Google Scholar
  52. OSBORN, M., BORN, T., KOITSCH, H.-J. & WEBER, K. (1978) Stereo immunofluorescence microscopy: I. Three-dimensional arrangement of microfilaments, microtubules and tonofilaments.Cell 14, 477–88.Google Scholar
  53. POSTE, G. & NICOLSON, G. L. (editors) (1981)Cell Surface Reviews, Vol. 7.Cytoskeletal elements and plasma membrane organization. Amsterdam: North-Holland.Google Scholar
  54. RAINES, E. W. & ROSS, R. (1982) Platelet-derived growth factor. I. High yield purification and evidence for multiple forms.J. biol. Chem. 257, 5154–60.Google Scholar
  55. ROSS, R. (1981) The platelet-derived growth factor. InTissue Growth Factors, Vol. 57, (edited by BASERGA, R.), pp. 133–159. Berlin, Heidelberg, New York: Springer-Verlag.Google Scholar
  56. SCHER, C. D., SHEPARD, R. C., ANTONIADES, H. N. & STILES, C. D. (1979) Platelet-derived growth factor and the regulation of the mammalian fibroblast cell cycle.Biochim. Biophys. Acta 560, 217–41.Google Scholar
  57. SCHLESSINGER, J. & GEIGER, B. (1981) Epidermal growth factor induces redistribution of actin and α-actinin in human epidermal carcinoma cells.Expl Cell Res. 134, 273–79.Google Scholar
  58. SEFTON, B. M. & HUNTER, T. (1981) Vinculin: A cytoskeletal target of the transforming protein of Rous sarcoma virus.Cell 24, 165–74.Google Scholar
  59. SEPPÄ, H., GROTENDORST, G., SEPPÄ, S., SCHIFFMANN, E. & MARTIN, G. R. (1982) Platelet-derived growth factor is chemotactic for fibroblasts.J. Cell Biol. 92, 584–8.Google Scholar
  60. SHRIVER, K. & ROHRSCHNEIDER, L. (1981) Organization of pp60src and selected cytoskeletal proteins within adhesion plaques and junctions of Rous sarcoma virus-transformed rat cells.J. Cell Biol. 89, 525–35.Google Scholar
  61. SMALL, J. V. & L'ANGANGER, G. (1981) Organization of actin in the leading edge of cultured cells: Influence of osmium tetroxide and dehydration on the ultrastructure of actin meshworks.J. Cell Biol. 91, 695–705.Google Scholar
  62. SMALL, J. V., RINNERTHALER, G. & HINSSEN, H. (1981) Organization of actin meshworks in cultured cells. The leading edge.Cold Spring Harb. Symp. quant. Biol. 46, 599–611.Google Scholar
  63. TILNEY, L. G., BONDER, E. M. & DeROSIER, D. J. (1981) Actin filaments elongate from their membrane-associated ends.J. Cell Biol. 90, 485–94.Google Scholar
  64. VASILIEV, J. M., GELFAND, I. M., DOMNINA, L. V., DORFMAN, N. A. & PLETYUSHKINA, O. Y. (1976) Active cell edge and movements of concanavalin A receptors of the surface of epithelial and fibroblastic cells.Proc. natn. Acad. Sci. 73, 4085–9.Google Scholar
  65. WANG, E. & GOLDBERG, A. R. (1976) Changes in microfilament organization and surface topography upon transformation of chick embryo fibroblasts with Rous sarcoma virus.Proc. natn. Acad. Sci. 73, 4065–9.Google Scholar
  66. WESTERMARK, B., HELDIN, C.-H., EK, B., JOHNSSON, A., MELLSTRÖM, K., NISTÉR, M. & WASTESON, Å. (1983)Biochemistry and Biology of Platelet-Derived Growth Factor (edited by GUROFF, G.). New York, Chichester: Wiley (in press).Google Scholar
  67. WESTERMARK, B. & WASTESON, Å. (1976) A platelet factor stimulating human normal glial cells.Expl Cell Res. 98, 170–4.Google Scholar
  68. WILKINS, J. A. & LIN, S. (1982) High-affinity interaction of vinculin with actin filaments in vitro.Cell 28, 83–90.Google Scholar
  69. WILLINGHAM, M. C. & PASTAN, I. H. (1982) Transit of epidermal growth factor through coated pits of the Golgi system.J. Cell Biol. 94, 207–12.Google Scholar
  70. WITTE, L. D., KAPLAN, K. L., NOSSEL, H. L., LAGES, B. A., WEISS, H. J. & GOODMAN, D. S. (1978) Studies of the release from human platelets of the growth factor for cultured human arterial smooth muscle cells.Circ. Res. 42, 402–9.Google Scholar

Copyright information

© Chapman and Hall Ltd 1983

Authors and Affiliations

  • Karin Mellström
    • 1
  • Anna-Stina Höglund
    • 2
  • Monica Nistér
    • 1
  • Carl-Henrik Heldin
    • 3
  • Bengt Westermark
    • 1
  • Uno Lindberg
    • 2
  1. 1.Institute of PathologyUniversity Hospital, University of UppsalaUppsalaSweden
  2. 2.Department of Zoological Cell Biology, Wenner-Grens InstituteStockholm UniversityStockholmSweden
  3. 3.Institute of Medical and Physiological Chemistry, BMCUniversity of UppsalaSweden

Personalised recommendations