Journal of Muscle Research & Cell Motility

, Volume 4, Issue 2, pp 143–161 | Cite as

Some functional properties of nonpolymerizable and polymerizable tropomyosin

  • Renata Dabrowska
  • Ewa Nowak
  • W. Drabikowski


The binding of125I-labelled nonpolymerizable (brain or carboxypeptidase A-treated skeletal muscle) and polymerizable (intact skeletal muscle) tropomyosin to muscle F-actin was studied by ultracentrifugation under various conditions. The amount of nonpolymerizable tropomyosin bound to F-actin both in 0.1m KCl and in 7mm MgCl2 was much lower than that of the polymerizable one. In the presence of MgCl2 the amount of nonpolymerizable tropomyosin bound to F-actin approached saturation level. Under these conditions, however, the amount of skeletal muscle tropomyosin bound exceeded saturation, suggesting formation of both head-to-tail polymers and side-to-side aggregates. The latter seems to be responsible for the inhibition of acto-heavy meromyosin ATPase activity which is caused by skeletal muscle tropomyosin but not by nonpolymerizable tropomyosin.

Nonpolymerizable tropomyosin can substitute for the rabbit skeletal muscle tropomyosin in the regulatory system operating in skeletal muscle. Inhibition of ATPase activity of acto-heavy meromyosin by nonpolymerizable tropomyosin in the presence of troponin and the absence of calcium ions is less than that obtained with polymerizable tropomyosin. The inhibition of ATPase activity is directly correlated with the extent of binding of nonpolymerizable tropomyosin to F-actin under the conditions of the ATPase assay.


Polymer Calcium Skeletal Muscle MgCl2 Functional Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BAILEY, K. (1948) Tropomyosin a new asymmetric protein component of the muscle fibril.Biochem. J. 43, 271–9.Google Scholar
  2. COHEN, C. A. (1975) The protein switch of muscle contraction.Sci. Amer. 233, 36–45.Google Scholar
  3. CÔTÉ, G. P., LEWIS, W. G., PATO, M. D. & SMILLIE, L. B. (1978a) Platelet tropomyosin: lack of binding to skeletal muscle troponin and correlation with sequence.FEBS Lett. 94, 131–5.Google Scholar
  4. CÔTÉ, G., LEWIS, W. G. & SMILLIE, L. B. (1978b) Non-polymerizability of platelet tropomyosin and its NH2- and COOH-terminal sequences.FEBS Lett. 91, 237–41.Google Scholar
  5. CÔTÉ, G. P. & SMILLIE, L. B. (1981a) The interaction of equine platelet tropomyosin with skeletal muscle actin.J. biol. Chem. 256, 7257–7261.Google Scholar
  6. CÔTÉ, G. P. & SMILLIE, L. B. (1981b) The effects of platelet tropomyosin on the ATPase activities of muscle actomyosin subfragment 1 in the absence and presence of troponin, its components, and calmodulin.J. biol. Chem. 256, 11999–2004.Google Scholar
  7. CUMMINS, P. & PERRY, S. V. (1974) The subunits and biological activity of polymorphic forms of tropomyosin.Biochem. J. 141, 43–9.Google Scholar
  8. DABROWSKA, R., NOWAK, E. & DRABIKOWSKI, W. (1980a) Comparison of functional properties of non-muscle and muscle tropomyosin.Eur. J. Cell Biol. 22, 319.Google Scholar
  9. DABROWSKA, R., NOWAK, E. & DRABIKOWSKI, W. (1980b) Comparison of some functional properties of non-polymerizable and polymerizable tropomyosin.J. Musc. Res. Cell Motility 1, 466.Google Scholar
  10. DABROWSKA, R., NOWAK, E. & DRABIKOWSKI, W. (1980c) Comparative studies of chicken gizzard and rabbit skeletal tropomyosin.Comp. Biochem. Physiol. 65B, 75–83.Google Scholar
  11. DABROWSKA, R., SOSINSKI, J. & DRABIKOWSKI, W. (1980d) Comparative studies of various kinds of tropomyosin. InPlasticity of Muscle (edited by PETTE, D.), pp. 225–239. Berlin, New York: Walter de Gruyter.Google Scholar
  12. DRABIKOWSKI, W., DABROWSKA, R. & BARYŁKO, B. (1973) Properties of troponin and its constituents.Acta biochim. polon. 20, 181–99.Google Scholar
  13. DRABIKOWSKI, W. & NOWAK, E. (1968) Studies on the interaction of F-actin with tropomyosin.Eur. J. Biochem. 5, 376–84.Google Scholar
  14. EATON, B. L., KOMINZ, D. R. & EISENBERG, E. (1975) Correlation between the inhibition of the acto-heavy meromyosin ATPase and the binding of tropomyosin to F-actin: effects of Mg2+, KCl, troponin I and troponin C.Biochemistry 14, 2718–25.Google Scholar
  15. EBASHI, S. (1974) Regulatory mechanism of muscle contraction with special reference to the Ca-troponin-tropomyosin system.Essays Biochem. 10, 1–36.Google Scholar
  16. FINE, R. E. & BLITZ, A. L. (1975) A chemical comparison of tropomyosins from muscle and non-muscle tissues.J. Molec. Biol. 95, 447–54.Google Scholar
  17. FINE, R. E., BLITZ, A. L., HITCHCOCK, S. E. & KAMINER, B. (1973) Tropomyosin in brain and growing neurones.Nature 245, 182–5.Google Scholar
  18. HARTSHORNE, D. J. & MUELLER, H. (1969) The preparation of tropomyosin and troponin from natural actomyosin.Biochim. Biophys. Acta 175, 301–19.Google Scholar
  19. HASELGROVE, J. C. (1972) X-ray evidence for a conformational change in the actin-containing filaments of verte brate striated muscle.Cold Spring Harb. Symp. quant. Biol. 37, 341–52.Google Scholar
  20. HAYASHI, J. & HIRABAYASHI, T. (1978) The functional characteristics conserved in tropomyosins.J. Biochem. 83, 341–48.Google Scholar
  21. HUXLEY, H. E. (1972) Structural changes in the actin and myosin-containing filaments during contraction.Cold Spring Harb. Symp. quant. Biol. 37, 361–76.Google Scholar
  22. JOHNSON, P. & SMILLIE, L. B. (1977) Polymerizability of rabbit skeletal muscle tropomyosin: effect of enzymic and chemical modification.Biochemistry 16, 2264–9.Google Scholar
  23. KIELLEY, W. W. & BRADLEY, L. B. (1956) The relationship between sulfhydryl groups and the activation of myosin adenosine-triphosphatase.J. biol. Chem. 218, 653–9.Google Scholar
  24. KOBAYASHI, R., TAWATA, M., MACE, M. L., BRADLEY, W. A. & FIELD, J. B. (1982) Purification and characterization of tropomyosin from bovine thyroid.Biochim. Biophys. Acta 712, 220–32.Google Scholar
  25. LAEMMLI, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature 227, 680–5.Google Scholar
  26. LÉGER, J., BOUVERET, P., SCHWARTZ, K. & SWYNGHEDAUW, B. (1976) A comparative study of skeletal and cardiac tropomyosin.Pflügers Arch. 362, 271–7.Google Scholar
  27. LOWRY, O. H., ROSEBROUGH, R. J., FARR, A. R. & RANDALL, R. J. (1951) Protein measurements with the Folin reagent.J. biol. Chem. 193, 265–75.Google Scholar
  28. MAK, A. S., LEWIS, W. G. & SMILLIE, L. B. (1979) Amino acid sequences of rabbit skeletal β and cardiac tropomyosin.FEBS Lett. 105, 232–4.Google Scholar
  29. MAK, A. S. & SMILLIE, L. B. (1981) Non-polymerizable tropomyosin: preparation, some properties and F-actin binding.Biochem. Biophys. Res. Commun. 101, 208–14.Google Scholar
  30. OOL, T., MIHASHI, K. & KABAYASHI, H. (1962) On the polymerization of tropomyosin.Archs Biochem. Biophys. 98, 1–11.Google Scholar
  31. PERRY, S. V. (1955) Myosin adenosinetriphosphatase.Meth. Enzymol. 2, 582–8.Google Scholar
  32. SCHLOSS, J. A. & GOLDMAN, R. D. (1980) Microfilaments and tropomyosin of cultured mammalian cells: isolation and characterization.J. Cell Biol. 87, 633–42.Google Scholar
  33. SCHWARZ, G. (1976) Some general aspects regarding the interpretation of binding data by means of a Scatchard plot.Biophys. Struct. Mech. 2, 1–12.Google Scholar
  34. STRZELECKA-GOŁASZEWSKA, H., JAKUBIAK, M. & DRABIKOWSKI, W. (1975) Changes in the state of actin during superprecipitation of actomyosin.Eur. J. Biochem. 55, 221–30.Google Scholar
  35. TANAKA, H. (1972) The helix content of tropomyosin and the interaction between tropomyosin and F-actin under various conditions.Biochim. Biophys. Acta 278, 556–66.Google Scholar
  36. UENO, H., TAWADA, Y. & OOI, T. (1976) Properties of non-polymerizable tropomyosin obtained by carboxypeptidase A digestion.J. Biochem. 80, 283–90.Google Scholar
  37. WALSH, T. P. & WEGNER, A. (1980) Effect of the state of oxidation of cysteine 190 of tropomyosin on the assembly of the actin-tropomyosin complex.Biochim. Biophys. Acta 626, 79–87.Google Scholar
  38. WEEDS, A. G. & POPE, B. (1977) Studies on the chymotryptic digestion of myosin. Effects of divalent cations on proteolytic susceptibility.J. molec. Biol. 111, 129–57.Google Scholar
  39. WEGNER, A. (1979) Equilibrium of the actin-tropomyosin interaction.J. molec. Biol. 131, 839–53.Google Scholar
  40. YANG, Y. Z., GORDON, D. J., KORN, E. D. & EISENBERG, E. (1977) Interaction between Acanthamoeba actin and rabbit skeletal muscle tropomyosin.J. biol. Chem. 252, 3374–8.Google Scholar
  41. YANG, Y. Z., KORN, E. D. & EISENBERG, E. (1979a) Binding of tropomyosin to copolymers of Acanthamoeba and muscle actin.J. biol. Chem. 254, 2084–8.Google Scholar
  42. YANG, Y. Z., KORN, E. D. & EISENBERG, E. (1979b) Cooperative binding of tropomyosin to muscle and Acanthamoeba actin.J. biol. Chem. 254, 7137–40.Google Scholar
  43. YOUNG, D. M., HIMMELFARB, S. & HARRINGTON, W. F. (1964) Studies on the tertiary structure of heavy meromyosin.J. biol. Chem. 239, 2822–9.Google Scholar

Copyright information

© Chapman and Hall Ltd 1983

Authors and Affiliations

  • Renata Dabrowska
    • 1
  • Ewa Nowak
    • 1
  • W. Drabikowski
    • 1
  1. 1.Department of Biochemistry of Nervous System and MuscleNencki Institute of Experimental BiologyWarsawPoland

Personalised recommendations