Journal of Muscle Research & Cell Motility

, Volume 3, Issue 1, pp 87–112 | Cite as

Sarcoplasmic Ca2+ transients during the contractile cycle of single barnacle muscle fibres: measurements with arsenazo III-injected fibres

  • George R. Dubyak
  • Antonio Scarpa
Papers

Summary

Single muscle fibres fromBalanus nubilus were injected with the metallochromic Ca2+ indicator arsenazo III; multi-wavelength microspectrophotometry was used to monitor changes in the absorption spectrum of such fibres during isometric tension transients elicited by electrical stimulation. Differential absorbance changes, recorded in the 660–720 nm region of the spectrum, were characterized by rapid, nearly linear increases during constant current depolarizing pulses (25–200 ms); upon termination of electrical stimuli the increased differential absorbance described an exponential (k=0.6–2.0 s−1) decay toward baseline levels. The maximal increases in these absorbance signals preceded the peaks of the tension transients by 300–400 ms at 15–17° C. Calibration of these optical transients indicated that the initial velocity of the rising phase corresponded to a 0.03 µm ms−1 increase in sarcoplasmic free Ca2+. Appreciable tension was not generated until the apparent peak magnitude of the free Ca2+ transient exceeded 2 µm; a further three-fold increase (from 2 to 6 µm) in the maximal value of the free Ca2+ transient was accompanied by a 20-fold increase in the magnitude of the tension transient.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AHMED, Z., KRAGIE, L. & CONNOR, J. A. (1980) Stiochiometry and apparent dissociation constant of the calcium-arsenazo III reaction under physiological conditions.Biophys. J. 32, 907–20.Google Scholar
  2. ASHLEY, C. C. & ELLORY, J. C. (1972) The efflux of magnesium from single crustacean muscle fibres.J. Physiol. 226, 653–74.Google Scholar
  3. ASHLEY, C. C. & LIGNON, J. (1981) Aequorin responses during relaxation of tension of single muscle fibres stimulated by voltage clamp.J. Physiol. 318, 10–11P.Google Scholar
  4. ASHLEY, C. C. & MOISESCU, D. G. (1972) Model for the action of calcium in muscle.Nature New Biol. 237, 208–11.Google Scholar
  5. ASHLEY, C. C. & MOISESCU, D. G. (1973) The mechanism of the free calcium change in single muscle fibres during contraction.J. Physiol. 231, 23–25P.Google Scholar
  6. ASHLEY, C. C. & MOISESCU, D. G. (1977) Effect of changing the composition of the bathing solutions upon the isometric tension-pCa relationship in bundles of crustacean myofibrils.J. Physiol. 270, 627–52.Google Scholar
  7. ASHLEY, C. C. & RIDGWAY, E. B. (1970) On the relationships between membrane potential, calcium transient and tension in single barnacle muscle fibres.J. Physiol. 209, 105–30.Google Scholar
  8. BAYLOR, S. M., CHANDLER, W. K. & MARSHALL, M. W. (1981) Comparison of optical signals in frog muscle obtained with three calcium indicator dyes.Biophys. J. 33, 150a.Google Scholar
  9. BLINKS, J. R., RUDEL, R. & TAYLOR, S. R. (1978) Calcium transients in isolated amphibian skeletal muscle fibres: detection with aequorin.J. Physiol. 277, 291–323.Google Scholar
  10. BRINLEY, F. J., SCARPA, A. & TIFFERT, T. (1977) The concentration of ionized magnesium in barnacle muscle fibres.J. Physiol. 266, 545–65.Google Scholar
  11. BROWN, H. M. & RYDQUIST, B. (1981) Arsenazo III-Ca++. Effect of pH, ionic strength, and arsenazo III concentration on equilibrium binding evaluated with Ca++-ion specific electrodes and absorbance measurements.Biophys. J. 36, 117–38.Google Scholar
  12. CALDWELL, P. C. (1958) Studies on the internal pH of large muscle and nerve fibres.J. Physiol. 142, 22–62.Google Scholar
  13. CHANCE, B., LEGALLAIS, V., SORGE, J. & GRAHAM, N. (1975) A versatile time-sharing multi-channel spectrophotometer, reflectometer, and fluorometer.Analyt. Biochem. 66, 498–514.Google Scholar
  14. DiPOLO, R., REQUENA, J., BRINLEY, F. J., MULLINS, L. J., SCARPA, A. & TIFFERT, T. (1976) Ionized calcium concentrations in squid axons.J. gen. Physiol. 67, 433–67.Google Scholar
  15. ECKERT, R., TILLOTSON, D. & RIDGWAY, E. B. (1977) Voltage-dependent facilitation of Ca++ entry in voltage-clamped, aequorin-injected molluscan neurons.Proc. natn. Acad. Sci. 74, 1748–52.Google Scholar
  16. EDWARDS, C., CHICHIBU, S. & HAGIWARA, S. (1964) Relation between membrane potential changes and tension in barnacle muscle fibers.J. gen. Physiol. 48, 225–34.Google Scholar
  17. GAYTON, D. C. & ELLIOTT, G. B. (1980) Structural and osmotic studies of single giant fibres of barnacle muscle.J. Musc. Res. Cell Motility 1, 391–408.Google Scholar
  18. GORMAN, A. L. F. & THOMAS, M. V. (1980) Intracellular calcium accumulation during depolarization in a molluscan neurone.J. Physiol. 308, 259–285.Google Scholar
  19. HINKE, J. A. M., CAILLE, J. P. & GAYTON, D. C. (1973) Distribution and state of monovalent ions in skeletal muscle based on ion-electrode, isotope, and diffusion analysis.Ann. N.Y. Acad. Sci. 204, 274–96.Google Scholar
  20. HOYLE, G. & SMYTH, T. (1963) Neuromuscular physiology of giant muscle fibers of a barnacle,Balanus nubilis Darwin.Comp. Biochem. Physiol. 10, 291–314.Google Scholar
  21. KOVACS, L., RIOS, E. & SCHNEIDER, M. F. (1979) Calcium transients and intramembrane charge movement in skeletal muscle fibres.Nature 279, 391–6.Google Scholar
  22. MARBAN, E., RINK, T. J., TSIEN, R. W. & TSIEN, R. Y. (1980) Free calcium in heart muscle at rest and during contraction measured with Ca2+-sensitive microelectrodes.Nature 286, 845–50.Google Scholar
  23. MILEDI, R., PARKER, I. & SCHALOW, G. (1977a) Measurement of calcium transients in frog muscle by the use of arsenazo III.Proc. R. Soc. 198, 201–10.Google Scholar
  24. MILEDI, R., PARKER, I. & SCHALOW, G. (1977b) Calcium transients in frog slow muscle fibres.Nature 286, 750–3.Google Scholar
  25. RIOS, E. & SCHNEIDER, M. F. (1981) Stoichiometry of the reactions of calcium with the metallochromic indicator dyes antipyrylazo III and arsenazo III.Biophys. J. 36, 607–22.Google Scholar
  26. SCARPA, A., BRINLEY, F. J., TIFFERT, T. & DUBYAK, G. (1978) Metallochromic indicators of ionized calcium.Ann. N.Y. Acad. Sci. 307, 86–112.Google Scholar
  27. SCARPA, A. (1979) Measurement of calcium ion concentrations with metallochromic indicators. InDetection and Measurement of Free Ca (edited by ASHLEY, C. C. and CAMPBELL, A. K.), pp. 85–115. Amsterdam: North Holland.Google Scholar
  28. SIMON, W., AMMAN, D., OEHME, M. & MORF, W. E. (1977) Calcium-selective electrodes.Ann. N.Y. Acad. Sci. 307, 52–70.Google Scholar
  29. THOMAS, M. V. (1979) Arsenazo III forms 2:1 complexes with Ca and 1:1 complexes with Mg under physiological conditions.Biophys. J. 25, 541–8.Google Scholar

Copyright information

© Chapman and Hall Ltd 1982

Authors and Affiliations

  • George R. Dubyak
    • 1
  • Antonio Scarpa
    • 1
  1. 1.Department of Biochemistry and BiophysicsUniversity of PennsylvaniaPhiladelphiaU.S.A.

Personalised recommendations