Cellular and Molecular Neurobiology

, Volume 7, Issue 2, pp 105–149

Pontogeniculooccipital waves: spontaneous visual system activity during rapid eye movement sleep

  • Clifton W. Callaway
  • Ralph Lydic
  • Helen A. Baghdoyan
  • J. Allan Hobson
Review and Commentary

Summary

  1. 1.

    Pontogeniculooccipital (PGO) waves are recorded during rapid eye movement (REM) sleep from the pontine reticular formation, lateral geniculate bodies, and occipital cortex of many species.

     
  2. 2.

    PGO waves are associated with increased visual system excitability but arise spontaneously and not via stimulation of the primary visual afferents. Both auditory and somatosensory stimuli influence PGO wave activity.

     
  3. 3.

    Studies using a variety of techniques suggest that the pontine brain stem is the site of PGO wave generation. Immediately prior to the appearance of PGO waves, neurons located in the region of the brachium conjunctivum exhibit bursts of increased firing, while neurons in the dorsal raphe nuclei show a cessation of firing.

     
  4. 4.

    The administration of pharmacological agents antagonizing noradrenergic or serotonergic neurotransmission increases the occurrence of PGO waves independent of REM sleep. Cholinomimetic administration increases the occurrence of both PGO waves and other components of REM sleep.

     
  5. 5.

    Regarding function, the PGO wave-generating network has been postulated to inform the visual system about eye movements, to promote brain development, and to facilitate the response to novel environmental stimuli.

     

Key words

pontogeniculooccipital waves rapid eye movement (REM) sleep monoamines acetylcholine pontine reticular formation lateral geniculate bodies occipital cortex corollary discharge 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arankowsky-Sandoval, G., Prospero-Garcia, O., Aguilar-Roblero, R., and Drucker-Colin, R. (1986a). Cholinergic reduction of REM sleep duration is reversed by auditory stimulation.Brain Res. 375:377–380.Google Scholar
  2. Arankowsky-Sandoval, G., Prospero-Garcia, O., Aguilar-Roblero, R., and Drucker-Colin, R. (1986b). Rapid eye movement (REM) sleep and ponto-geniculo-occipital (PGO) spike density are increased by somatic stimulation.Brain Res. 400:155–158.Google Scholar
  3. Baghdoyan, H. A., Monaco, A. P., Rodrigo-Angulo, M. L., Assens, F., McCarley, R. W., and Hobson, J. A. (1984a). Microinjection of neostigmine into the pontine reticular formation of cats enhances desynchronized sleep signs.J. Pharmacol. Exp. Ther. 231:173–180.Google Scholar
  4. Baghdoyan, H. A., Rodrigo-Angulo, M. L., McCarley, R. W., and Hobson, J. A. (1984b). Site-specific enhancement and suppression of desynchronized sleep signs following cholinergic stimulation of three brain stem regions.Brain Res. 306:39–52.Google Scholar
  5. Baghdoyan, H. A., Lydic, R., Callaway, C. W., and Hobson, J. A. (1987a). Increased ponto-geniculo-occipital (PGO) wave frequency following central administration of neostigmine (submitted for publication).Google Scholar
  6. Baghdoyan, H. A., Rodrigo-Angulo, M. L., McCarley, R. W., and Hobson, J. A. (1987b). A neuroanatomical gradient in the pontine tegmentum for the cholinoceptive induction of desynchronized sleep signs.Brain Res. (in press).Google Scholar
  7. Benoit, O., and Adrien, J. (1975). PGO activity as a criterion of paradoxical sleep. A critical review. InThe Experimental Study of Human Sleep: Methodological Problems (G. G. Lairy and P. Salzarulo, Eds.), Elsevier, Amsterdam, pp. 23–36.Google Scholar
  8. Bizzi, E. (1966a). Changes in the orthodromic and antidromic response of optic tract during the eye movements of sleep.J. Neurophysiol. 29:861–871.Google Scholar
  9. Bizzi, E. (1966b). Discharge patterns of single geniculate neurons during the rapid eye movements of sleep.J. Neurophysiol. 29:1087–1095.Google Scholar
  10. Bizzi, E., and Brooks, D. C. (1963). Functional connections between pontine reticular formation and lateral geniculate nucleus during deep sleep.Arch. Ital. Biol. 101:666–680.Google Scholar
  11. Bizzi, E., Pompeiano, O., and Somogyi, I. (1964). Spontaneous activity of single vestibular neurons of unrestrained cats during sleep and wakefulness.Arch. Ital. Biol. 102:308–330.Google Scholar
  12. Bowe-Anders, C., Adrien, J., and Roffwarg, H. P. (1974). Ontogenesis of pontogeniculo-occipital activity in the lateral geniculate nucleus during deep sleep.Exp. Neurol. 43:242–260.Google Scholar
  13. Bowker, R. M. (1981). The awakening of the sleeping pontogeniculo-occipital wave. InSleep 1980, 5th European Congress for Sleep Research (W. P. Koella, Ed.), pp. 304–306.Google Scholar
  14. Bowker, R. M. (1985). Variability in the characteristics of pontogeniculooccipital spikes during paradoxical sleep.Exp. Neurol. 87:212–224.Google Scholar
  15. Bowker, R. M., and Morrison, A. R. (1976). The startle reflex and PGO spikes.Brain Res. 102:185–190.Google Scholar
  16. Breitmeyer, B. G. (1986). Eye movements and visual pattern perception. InPattern Recognition by Humans and Machines. Vol. 2: Visual Perception (E. C. Schwab and H. C. Nusbaum, Eds.), Academic Press, New York, pp. 65–86.Google Scholar
  17. Brodal, A. (1981).Neurological Anatomy in Relation to Clinical Medicine, 3rd ed., Oxford University Press, New York.Google Scholar
  18. Brooks, D. C. (1967a). Localization of the lateral geniculate nucleus monophasic waves associated with paradoxical sleep in the cat.Electroencephalogr. Clin. Neurophysiol. 23:123–133.Google Scholar
  19. Brooks, D. C. (1967b). Effect of bilateral optic nerve section on visual system monophasic wave activity in the cat.Electroencephalogr. Clin. Neurophysiol. 23:134–141.Google Scholar
  20. Brooks, D. C. (1968a). Waves associated with eye movements in the awake and sleeping cat.Electroencephalogr. Clin. Neurophysiol. 24:532–541.Google Scholar
  21. Brooks, D. C. (1968b). Localization and characteristics of the cortical waves associated with eye movements in the cat.Exp. Neurol. 22:603–613.Google Scholar
  22. Brooks, D. C., and Bizzi, E. (1963). Brain stem electrical activity during deep sleep.Arch. Ital. Biol. 101:648–665.Google Scholar
  23. Brooks, D. C., and Gershon, M. D. (1971). Eye movement potentials in the oculomotor and visual systems of the cat: A comparison of reserpine induced waves with those present during wakefulness and rapid eye movement sleep.Brain Res. 27:223–239.Google Scholar
  24. Brooks, D. C., and Gershon, M. D. (1977). Amine repletion in the reserpinized cat: Effect upon PGO waves and REM sleep.Electroencephalogr. Clin. Neurophysiol. 42:35–47.Google Scholar
  25. Brooks, D. C., Gershon, M. D., and Simon, R. P. (1972a). An analysis of the effects of reserpine upon pontogeniculooccipital wave activity in the cat.Neuropharmacology 11:499–510.Google Scholar
  26. Brooks, D. C., Gershon, M. D., and Simon, R. P. (1972b). Brain stem serotonin depletion and pontogeniculooccipital wave activity in the cat treated with reserpine.Neuropharmacology 11:511–520.Google Scholar
  27. Buguet, A. (1969).Monoamines et Sommeils. V. Etude des Relations Entre les Structures Monoaminergiques du Pont et les Pointes Ponto-geniculo Occipitales du Sommeil, Thèse Medicine, Lyon.Google Scholar
  28. Buguet, A., Petitjean, F., and Jouvet, M. (1971). Suppression des pointes ponto-géniculo-occipitales du sommeil par lésion au injection in situ de 6 hydroxy-dopamine au niveau du tegmentum pontique.C.R. Soc. Biol. 164:2293–2298.Google Scholar
  29. Calvet, J., and Calvet, M. C. (1968). Etude quantitative et organisation en fonction de la vigilance de l'activité unitaire des diverses régions du cortex cérébral.Brain Res. 10:183–199.Google Scholar
  30. Calvet, J., Calvet, M. C., and Langlois, J. M. (1965). Diffuse cortical activation waves during so-called desynchronized EEG patterns.J. Neurophysiol. 28:893–907.Google Scholar
  31. Calvo, J. M., and Fernandez-Guardiola, A. (1984). Phasic activity of the basolateral amygdala, cingulate gyrus and hippocampus during REM sleep in the cat.Sleep 7:202–210.Google Scholar
  32. Campbell, S. C., and Tobler, I. (1984). Animal sleep: A review of sleep duration across phylogeny.Neurosci. Biobehav. Rev. 8:269–300.Google Scholar
  33. Cespuglio, R., Gomez, M. E., Walker, E., and Jouvet, M. (1979). Effets du refroidissement et de la stimulation des noyaux du système du raphe sur les états de vigilance chez le chat.Electroencephalogr. Clin. Neurophysiol. 47:289–308.Google Scholar
  34. Cespuglio, R., Gomez, M. E., Faradji, H., and Jouvet, M. (1982). Alterations in the sleep-waking cycle induced by cooling of the locus coeruleus area.Electroencephalogr. Clin. Neurophysiol. 54:570–578.Google Scholar
  35. Chouvet, G., and Gadea-Ciria, M. (1974). Analyse séquentielle de l'activité PGO chez le chat.Electroencephalogr. Clin. Neurophysiol. 36:597–607.Google Scholar
  36. Cohen, B., and Feldman, M. (1968). Relationship of electrical activity in the pontine reticular formation and lateral geniculate body to rapid eye movements.J. Neurophysiol. 31:807–817.Google Scholar
  37. Cottee, L. J., Van Der Stern, J. A., and Burke, W. (1974). PGO waves in the lateral geniculate nucleus triggered by barbituate.Brain Res. 70:205–219.Google Scholar
  38. Crick, F., and Mitchison, G. (1983). The function of dream sleep.Nature (Lond.)304:111–114.Google Scholar
  39. Dahlstrom, A., and Fuxe, K. (1965). Evidence for the existence of monoaminergic neurons in the central nervous system.Acta Physiol. Scand. 64 (Suppl. 247):1–36.Google Scholar
  40. Davenne, D., and Adrien, J. (1984). Suppression of PGO waves in the kitten: Anatomical effects on the lateral geniculate nucleus.Neurosci. Lett. 45:33–38.Google Scholar
  41. Delorme, F., Jeannerod, M., and Jouvet, M. (1965). Effets remarquables de la réserpine sur l'activité EEG phasique ponto-géniculo-occipitale.C.R. Soc. Biol. 159:900–904.Google Scholar
  42. Delorme, F., Froment, J. L., and Jouvet, M. (1966). Suppression du sommeil par la p-chlormethamphétamine et la p-chlorphénylalanine.C.R. Soc. Biol. 160:2347–2351.Google Scholar
  43. Dement, W. (1960). The effect of dream deprivation.Science 131:1705–1707.Google Scholar
  44. Dement, W., and Kleitman, N. (1957). The relation of eye movements during sleep to dream activity: An objective method for the study of dreaming.J. Exp. Psychol. 53:339–346.Google Scholar
  45. Drucker-Colin, R., Bernal-Pedraza, J., Fernandez-Cancino, F., and Morrison, A. R. (1983). Increasing PGO spike density by auditory stimulation increases the duration and decreases the latency of rapid eye movement (REM) sleep.Brain Res. 278:308–312.Google Scholar
  46. Duysan-Peyrethon, D., Peyrethon, J., and Jouvet, M. (1967). Etude quantitative des phénomènes phasiques du sommeil paradoxal pendant après sa déprivation instrumentale.C.R. Soc. Biol. 161:2530–2533.Google Scholar
  47. Dzoljic, M. R. (1978). Prostaglandins and sleep: Awaking effect of prostaglandins and sleep pattern of essential fatty acid deficient (EFAD) rats.Prostaglandins 15:317–324.Google Scholar
  48. Elazar, Z., and Hobson, J. A. (1985). Neuronal excitability control in health and disease: A neurophysiological comparison of REM sleep and epilepsy.Progr. Neurobiol. 25:141–188.Google Scholar
  49. Farber, J., Marks, G. A., and Roffwarg, H. P. (1980). Rapid eye movement sleep PGO-type waves are present in the dorsal pons of the albino rat.Science 209:615–617.Google Scholar
  50. Feinberg, I., and Evarts, E. V. (1969). Changing concepts of the function of sleep: Discovery of intense brain activity during sleep calls for revision of hypotheses as to its function.Biol. Psychiat. 1:331–348.Google Scholar
  51. Feldman, M., and Cohen, B. (1968). Electrical activity in the lateral geniculate body of the alert monkey associated with eye movements.J. Neurophysiol. 31:455–466.Google Scholar
  52. Flicker, C., McCarley, R. W., and Hobson, J. A. (1981). Aminergic neurons: State control and plasticity in three model systems.Cell. Mol. Neurobiol. 1:123–166.Google Scholar
  53. Gadea-Ciria, M. (1976a). Sequential discharges of phasic activities (PGO waves) during paradoxical sleep after selective cortical lesions in the cat.Arch. Ital. Biol. 114:399–408.Google Scholar
  54. Gadea-Ciria, M. (1976b). Cerebellar control of activity of the feline oculomotor system during paradoxical sleep.Exp. Neurol. 51:263–265.Google Scholar
  55. Gadea-Ciria, M. (1976c). Plasticity of ponto-geniculo-occipital waves during paradoxical sleep after frontal lobe lesions in the cat.Exp. Neurol. 53:328–338.Google Scholar
  56. Gadea-Ciria, M. (1977). Contributions of the frontal lobes to modulation of phasic activities in the oculomotor system during paradoxical sleep in the cat.Brain Res. 120:347–353.Google Scholar
  57. Gillin, J. C., and Borbely, A. (1985). Sleep: A neurobiological window on affective disorders.Trends Neurosci. 8:537–541.Google Scholar
  58. Gottesman, C. (1969). Etude sur les activités électrophysiologiques phasiques chez le rat.Physiol. Behav. 4:495–504.Google Scholar
  59. Henriksen, S. J., Jacobs, B. L., and Dement, W. C. (1972). Dependence of REM sleep PGO waves on cholinergic mechanisms.Brain Res. 48:412–416.Google Scholar
  60. Hobson, J. A. (1964a). The effects of chronic brain-stem lesions on cortical and muscular activity during sleep and waking in the cat.Electroencephalogr. Clin. Neurophysiol. 19:41–62.Google Scholar
  61. Hobson, J. A. (1964b). L'activité électrique phasique du cortex et du thalmus au cours du sommeil désynchronisé chez le chat.C.R. Soc. Biol. 158:2131–2135.Google Scholar
  62. Hobson, J. A., and McCarley, R. W. (1971). Cortical unit activity in sleep and waking.Electroencephalogr. Clin. Neurophysiol. 30:97–112.Google Scholar
  63. Hobson, J. A., and McCarley, R. W. (1977). The brain as a dream state generator: The activation-synthesis hypothesis of the dream process.Am. J. Psychiat. 134:1335–1348.Google Scholar
  64. Hobson, J. A., Alexander, J., and Frederickson, C. J. (1969). The effect of lateral geniculate lesions on phasic electrical activity of cortex during desynchronized sleep in the cat.Brain Res. 14:607–623.Google Scholar
  65. Hobson, J. A., McCarley, R. W., and Wyzinski, P. W. (1975). Sleep cycle oscillation: Reciprocal discharge by two brainstem neuronal groups.Science 189:55–58.Google Scholar
  66. Hobson, J. A., Lydic, R., and Baghdoyan, H. A. (1986). Evolving concepts of sleep cycle generation: From brain centers to neuronal populations.Behav. Brain Sci. 9:371–448.Google Scholar
  67. Hopfield, J. J., Feinstein, D. L., and Palmer, R. C. (1983). “Unlearning” has a stabilizing effect in collective memories.Nature (Lond.)304:158–160.Google Scholar
  68. Jacobs, B. L., Henriksen, S. J., and Dement, W. C. (1972). Neurochemical basis of the PGO wave.Brain Res. 48:406–411.Google Scholar
  69. Jacobs, B. L., Asher, R., and Dement, W. C. (1973). Electrophysiological and behavioral effects of electrical stimulation of the raphe nuclei in cats.Physiol. Behav. 11:489–495.Google Scholar
  70. Jeannerod, M. (1972). Saccade correlated events in the lateral geniculate body.Bibl. Opthal. (Basel)82:189–198.Google Scholar
  71. Jeannerod, M., and Kiyono, S. (1969a). Décharge unitaire de la formation réticulaire pontique et activité phasique ponto-géniculo-occipitale chez le chat sous réserpine.Brain Res. 12:112–128.Google Scholar
  72. Jeannerod, M., and Kiyono, S. (1969b). Effets de la réserpine sur la résponse réticulaire aux stimulations sensorielles.Brain Res. 12:129–137.Google Scholar
  73. Jeannerod, M., and Sakai, K. (1970). Occipital and geniculate potentials related to eye movements in the unanaesthetized cat.Brain Res. 19:361–377.Google Scholar
  74. Jeannerod, M., Mouret, J., and Jouvet, M. (1965). Effets secondaires de la déafférentation visuelle sur l'activité électrique phasique ponto-géniculo-occipitale du sommeil paradoxal.J. Physiol. (Paris)57:255–256.Google Scholar
  75. Jouvet, M. (1962). Recherches sur les structures nerveuses et les méchanismes résponsables des différentes phases du sommeil physiologique.Arch. Ital. Biol. 100:125–206.Google Scholar
  76. Jouvet, M. (1969). Biogenic amines and the states of sleep.Science 163:32–41.Google Scholar
  77. Jouvet, M. (1972). The role of monoamines and acetylcholine-containing neurons in the regulation of the sleep-wake cycle.Ergeb. Physiol. 64:166–307.Google Scholar
  78. Jouvet, M., Michel, F., and Courjon, J. (1959). L'activité électrique du rhinencéphale au cours du sommeil chez le chat.C.R. Soc. Biol. 153:101–105.Google Scholar
  79. Jouvet, M., Jeannerod, M., and Delorme, F. (1965). Organisation du système résponsable de l'activité phasique au cours du sommeil paradoxal.C.R. Soc. Biol. 159:1599–1604.Google Scholar
  80. Kasamatsu, T., and Adey, W. R. (1973). Visual cortical units associated with phasic activity in REM sleep and wakefulness.Brain Res. 55:323–331.Google Scholar
  81. Kaufman, L. S. (1983). Parachlorophenylalanine does not affect pontine-geniculate-occipital waves in rats despite significant effects on other sleep-waking parameters.Exp. Neurol. 80:410–417.Google Scholar
  82. Laihinen, A., and Vallela, P. (1978). The relationship between cortical recruiting responses and pontogeniculo-occipital waves during paradoxical sleep in the cat.Acta Physiol. Scand. 104:43–47.Google Scholar
  83. Laurent, J.-P., and Guerrero, F. A. (1975). Reversible suppression by localized cooling during paradoxical sleep in rats.Exp. Neurol. 49:356–369.Google Scholar
  84. Laurent, J.-P., Cespuglio, R., and Jouvet, M. (1974a). Délimitation des voies ascendantes de l'activité pontogéniculo-occipitale chez le chat.Brain Res. 65:29–52.Google Scholar
  85. Laurent, J.-P., Guerrero, F. A., and Jouvet, M. (1974b). Reversible suppresion of the geniculate PGO waves and of the concomitant increase of excitability of the intrageniculate optic nerve terminals.Brain Res. 81:558–563.Google Scholar
  86. Lydic, R., McCarley, R. W., and Hobson, J. A. (1983a). The time-course of dorsal raphe discharge, PGO waves and muscle tone averaged across multiple sleep cycles.Brain Res. 274:365–370.Google Scholar
  87. Lydic, R., McCarley, R. W., and Hobson, J. A. (1983b). Enhancement of dorsal raphe discharge by medial pontine reticular formation stimulation depends on behavioral state.Neurosci. Lett. 38:35–40.Google Scholar
  88. Lydic, R., McCarley, R. W., and Hobson, J. A. (1984). Forced activity alters sleep cycle periodicity and dorsal raphe discharge rhythm.Am. J. Physiol. 247:R135-R145.Google Scholar
  89. Lydic, R., McCarley, R. W., and Hobson, J. A. (1985). Timing function of the dorsal raphe nucleus and the temporal organization of the ultradian sleep cycle.Exp. Brain Res. Suppl. 12:125–144.Google Scholar
  90. Lydic, R., McCarley, R. W., and Hobson, J. A. (1987a). Serotonin neurons in sleep. I. Long-term recordings of dorsal raphe discharge frequency and PGO waves.Arch. Ital. Biol. (in press).Google Scholar
  91. Lydic, R., McCarley, R. W., and Hobson, J. A. (1987b). Serotonin neurons in sleep. II. Time course of dorsal raphe discharge, PGO waves and behavioral states.Arch. Ital. Biol. (in press).Google Scholar
  92. Magherini, P. C., Pompeiano, O., and Thoden, U. (1971). The neurochemical basis of REM sleep: A cholinergic mechanism responsible for rhythmic activation of the vestibular-oculomotor system.Brain Res. 35:565–569.Google Scholar
  93. Magherini, P. C., Pompeiano, O., and Thoden, U. (1972). Cholinergic mechanisms related to REM sleep. I. Rhythmic activity of the vestibulo-oculomotor system induced by an anticholinesterase in the decerebrate cat.Arch. Ital. Biol. 110:234–259.Google Scholar
  94. Malcolm, L. J., Bruce, I. S. C., and Burke, W. (1970a). Excitability of the lateral geniculate nucleus in the alert, non-alert and sleeping cat.Exp. Brain Res. 10:283–297.Google Scholar
  95. Malcolm, L. J., Watson, J. A., and Burke, W. (1970b). PGO waves as unitary events.Brain Res. 24:130–133.Google Scholar
  96. Marks, G. A., Farber, J., and Roffwarg, H. P. (1980a). Metencephalic localization of ponto-geniculo-occipital waves in the albino rat.Exp. Neurol. 69:667–677.Google Scholar
  97. Marks, G. A., Farber, J., Rubinstein, M., and Roffwarg, H. P. (1980b). Demonstration of ponto-geniculate-occipital waves in the albino rat.Exp. Neurol. 69:648–655.Google Scholar
  98. Matsumoto, J., and Jouvet, M. (1964). Effets de réserpine, DOPA et 5-HTP sur les deux états de sommeil.C.R. Soc. Biol. 158:2137–2140.Google Scholar
  99. McCarley, R. W., and Hobson, J. A. (1975). Neuronal excitability modulation over the sleep cycle: A structural and mathematical model.Science 189:58–60.Google Scholar
  100. McCarley, R. W., and Ito, K. (1983). Intracellular evidence linking medial pontine reticular formation neurons to PGO wave generation.Brain Res. 280:343–348.Google Scholar
  101. McCarley, R. W., Nelson, J. P., and Hobson, J. A. (1978). Ponto-geniculo-occipital (PGO) burst neurons: Correlative evidence for neuronal generators of PGO waves.Science 201:269–272.Google Scholar
  102. McCarley, R. W., Winkelman, J. W., and Duffy, F. H. (1983). Human cerebral potentials associated with REM sleep rapid eye movements: Links to PGO waves and waking potentials.Brain Res. 274:359–364.Google Scholar
  103. McGinty, D. J., and Harper, R. W. (1976). Dorsal raphe neurons: Depression of firing during sleep in cats.Brain Res. 101:569–575.Google Scholar
  104. Mergner, T., Magherini, P. C., and Pompeiano, O. (1976). Temporal distribution of rapid eye movements and related monophasic potentials in the brain stem following injection of an anticholinesterase.Arch. Ital. Biol. 114:75–99.Google Scholar
  105. Mikiten, T. M., Niebyl, P. H., and Hendley, C. D. (1961). EEG desynchronization during behavioral sleep associated with spike discharges from the thalamus of the cat.Fed. Proc. 20:327.Google Scholar
  106. Monaco, A. P., Baghdoyan, H. A., Nelson, J. P., and Hobson, J. A. (1984). Cortical PGO wave amplitude and eye movement direction are correlated in REM sleep but not in waking.Arch. Ital. Biol. 122:213–223.Google Scholar
  107. Morgane, P. J., Bronzino, J. D., and Kennard, M. M. (1981). PGO wave activity and cortical EEG in the reserpinized, anesthetized cat.Sleep 4:207–219.Google Scholar
  108. Morrison, A. R. (1979). Brainstem regulation of behavior during sleep and wakefulness.Prog. Neurobiol. Physiol. Psychol. 8:91–131.Google Scholar
  109. Morrison, A. R., and Pompeiano, O. (1966). Vestibular influences during sleep. IV. Functional relations between the vestibular nuclei and lateral geniculate nucleus during desynchronized sleep.Arch. Ital. Biol. 104:425–458.Google Scholar
  110. Mouret, J., Jeannerod, M., and Jouvet, M. (1963). L'activité électrique du système visuel au cours de la phase paradoxale du sommeil chez le chat.J. Physiol. (Paris)55:305–306.Google Scholar
  111. Munson, J. B. (1974). Eye movement potentials following visual deafferentation.Brain Res. 66:435–442.Google Scholar
  112. Munson, J. B., and Graham, R. B. (1971). Lateral geniculate spikes in sleeping, awake and reserpine-treated cats: Correlated excitability changes in superior colliculus and related structures.Exp. Neurol. 31:326–336.Google Scholar
  113. Munson, J. B., and Schwartz, K. S. (1972). Lateral geniculate and occipital cortex spikes with eye movements in awake and sleeping cats: Temporal and functional correlations.Exp. Neurol. 35:300–304.Google Scholar
  114. Munson, J. B., Graham, R. B., and King, F. A. (1970). Experimental evidence for the identity of lateral geniculate “PGO” waves of waking, sleeping and reserpine-treated cats.Fed. Proc. 29:792.Google Scholar
  115. Nakamura, S. (1975). Two types of inhibitory effects upon brain stem reticular neurons by low frequency stimulation of raphe nucleus in the rat.Brain Res. 3:140–144.Google Scholar
  116. Neal, H., and Bond, A. (1983). The influence of GABAergic drugs on PGO activity in the cat.Neuropharmacology 22:881–886.Google Scholar
  117. Nelson, J. P., McCarley, R. W., and Hobson, J. A. (1983). REM sleep burst neurons, PGO waves and eye movement information.J. Neurophysiol. 50:784–797.Google Scholar
  118. Pompeiano, O., and Morrison, A. R. (1965). Vestibular influences during sleep. I. Abolition of the rapid eye movements of desynchronized sleep following vestibular lesions.Arch. Ital. Biol. 103:569–595.Google Scholar
  119. Pompeiano, O., and Morrison, A. R. (1966). Vestibular input to the lateral geniculate nucleus during desynchronized sleep.Pflüger's Arch. 290:272–274.Google Scholar
  120. Pompeiano, O., and Valentinuzzi, M. (1976). A mathematical model for the mechanisms of rapid eye movements induced by an anticholinesterase in the decerebrate cat.Arch. Ital. Biol. 114:103–154.Google Scholar
  121. Ruch-Monachon, M. A., Jalfre, M., and Haefly, W. (1976a). Drugs and PGO waves in the lateral geniculate body of the curarized cat. I. PGO wave activity induced by Ro 4-1284 and by p-chlorophenylalanine (PCPA) as a basis for neuropharmacological studies.Arch. Int. Pharmacodyn. Ther. 219:251–268.Google Scholar
  122. Ruch-Monachon, M. A., Jalfre, M., and Haefly, W. (1976b). Drugs and PGO waves in the lateral geniculate body of the curarized cat. II. PGO wave activity and brain 5-hydroxytryptamine.Arch. Int. Pharmacodyn. Ther. 219:269–286.Google Scholar
  123. Ruch-Monachon, M. A., Jalfre, M., and Haefly, W. (1976c). Drugs and PGO waves in the lateral geniculate body of the curarized cat. III. PGO wave activity and brain catecholamines.Arch. Int. Pharmacodyn. Ther. 219:287–307.Google Scholar
  124. Ruch-Monachon, M. A., Jalfre, M., and Haefly, W. (1976d). Drugs and PGO waves in the lateral geniculate body of the curarized cat. IV. The effects of acetylcholine, GABA and benzodiazepines on PGO wave activity.Arch. Int. Pharmacodyn. Ther. 219:308–325.Google Scholar
  125. Ruch-Monachon, M. A., Jalfre, M., and Haefly, W. (1976e). Drugs and PGO waves in the lateral geniculate body of the curarized cat. V. Miscellaneous compounds. Synopsis of the role of central neurotransmitters on PGO wave activity.Arch. Int. Pharmacodyn. Ther. 219:326–346.Google Scholar
  126. Saito, H., Sakai, H., and Jouvet, M. (1977). Discharge pattern of the nucleus parabrachialis lateralis neurons of the cat during sleep and waking.Brain Res. 134:59–72.Google Scholar
  127. Sakai, K. (1980). Some anatomical and physiological properties of ponto-mesencephalic tegmental neurons with special reference to the PGO waves and postural atonia during paradoxical sleep in the cat. InThe Reticular Formation Revisited (J. A. Hobson and M. A. B. Brazier, Eds.), Raven Press, New York, pp. 427–447.Google Scholar
  128. Sakai, K. (1985). Anatomical and physiological basis of paradoxical sleep. InBrain Mechanisms of Sleep (D. J. McGinty, R. Drucker-Colin, A. Morrison, and P. L. Parmeggiani, Eds.), Raven Press, New York, pp. 111–137.Google Scholar
  129. Sakai, K., and Cespuglio, R. (1976). Evidence for the presence of eye movement potentials during paradoxical sleep in cats.Electroencephalogr. Clin. Neurophysiol. 41:37–48.Google Scholar
  130. Sakai, K., and Jouvet, M. (1980). Brain stem PGO-on cells projecting directly to the cat dorsal lateral geniculate nucleus.Brain Res. 194:500–505.Google Scholar
  131. Sakai, K., Petitjean, F., and Jouvet, M. (1976). Effects of ponto-mesencephalic lesions and electrical stimulation upon PGO waves and EMPs in unanesthetized cats.Electroencephalogr. Clin. Neurophysiol. 41:49–63.Google Scholar
  132. Sakakura, H. (1968). Spontaneous and evoked unitary activity of cat lateral geniculate neurons in sleep and wakefulness.Jap. J. Physiol. 18:23–42.Google Scholar
  133. Salzarulo, P., Lairy, G. C., Bancaud, J., and Munari, C. (1975). Direct depth recording of the striate cortex during REM sleep in man: Are there PGO potentials?Electroencephalogr. Clin. Neurophysiol. 38:199–202.Google Scholar
  134. Simon, R., Gershon, M. D., and Brooks, D. C. (1973). The role of the raphe nuclei in the regulation of PGO wave activity.Brain Res. 58:313–330.Google Scholar
  135. Smith, C. (1985). Sleep states and learning: A review of the animal literature.Neurosci. Biobehav. Rev. 9:157–168.Google Scholar
  136. Sperry, R. W. (1950). Neural basis of the spontaneous optokinetic response produced by visual inversion.J. Comp. Physiol. Psychol. 443:432–439.Google Scholar
  137. Stern, W. C., Morgane, P. J., and Bronzino, J. D. (1972). LSD: Effects on sleep patterns and spiking activity in the lateral geniculate nucleus.Brain Res. 41:199–204.Google Scholar
  138. Stern, W. C., Forbes, W. B., and Morgane, P. J. (1974). Absence of ponto-geniculo-occipital (PGO) spikes in rats.Physiol. Behav. 12:293–295.Google Scholar
  139. Thoden, U., Magherini, P. C., and Pompeiano, O. (1972). Cholinergic mechanisms related to REM sleep. II. Effects of an anticholinesterase on the discharge of central vestibular neurons in the decerebrate cat.Arch. Ital. Biol. 110:260–283.Google Scholar
  140. Thomas, J., and Benoit, O. (1967). Individualisation d'un sommeil à ondes et activité phasique.Brain Res. 5:221–235.Google Scholar
  141. Thompson, R., Ramsay, A., and Yu, J. (1984). A generalized learning deficit in albino rats with early median raphe or pontine reticular formation lesions.Physiol. Behav. 32:107–114.Google Scholar
  142. Trulson, M. E., and Boys, R. (1984). Effects of chronic administration of d-amphetamine on PGO wave activity in the cat.Neuropharmacology 23:1151–1160.Google Scholar
  143. Ursin, R. (1978). PGO waves and insomnia in PCPA treated cats.Sleep Res. 7:88.Google Scholar
  144. Ursin, R., and Sterman, M. B. (1981).A Manual for the Standardized Scoring of Sleep and Waking States in the Adult Cat, Brain Information Service/Brain Research Institute, University of California, Los Angeles.Google Scholar
  145. Vertes, R. P. (1984). Brainstem control of the events of REM sleep.Prog. Neurobiol. 22:241–288.Google Scholar
  146. Vimont-Vicary, P. (1966).Suppression des Différentes Etats de Sommeil. Etude Comportementale, EEG, et Neuropharmacologique Chez le Chat, Thèse, Université de Lyon, Lyon.Google Scholar
  147. Vivaldi, E., McCarley, R. W., and Hobson, J. A. (1980). Evocation of desynchronized sleep signs by chemical microstimulation of the pontine brainstem. InThe Reticular Formation Revisited (J. A. Hobson and M. A. B. Brazier, Eds.), Raven Press, New York, pp. 513–529.Google Scholar
  148. Vuillon-Cacciuttolo, G., and Seri, B. (1978). Effets de la section des nerfs optiques chez le babouin sur l'activité A Type de pointes génouilles et corticales au cours des divers états de vigilance.Electroencephalogr. Clin. Neurophysiol. 44:754–768.Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • Clifton W. Callaway
    • 1
  • Ralph Lydic
    • 1
    • 2
  • Helen A. Baghdoyan
    • 1
    • 3
  • J. Allan Hobson
    • 1
  1. 1.Laboratory of NeurophysiologyHarvard Medical SchoolBostonUSA
  2. 2.Departments of Medicine and PhysiologyPennsylvania State University, College of MedicineHersheyUSA
  3. 3.Departments of Anesthesia and PharmacologyPennsylvania State University, College of MedicineHersheyUSA

Personalised recommendations