Cellular and Molecular Neurobiology

, Volume 12, Issue 5, pp 463–472 | Cite as

Glial localization of interleukin-1α in invertebrate ganglia

  • Liesbet R. Paemen
  • Eliane Porchet-Hennere
  • Maryse Masson
  • Michael K. Leung
  • Thomas K. HughesJr.
  • George B. Stefano


  1. 1.

    Mytilus pedal ganglion contains a small population of glial cells that are immunopositive for interleukin-1α. Positively stained fibers can also be seen in the neuropil of these sections.

  2. 2.

    The marine wormNereis diversicolor also exhibits positive neural immunostaining for interleukin-1α.

  3. 3.

    Both organisms contain hemocytes that contain immunoactivity for interleukin-1α. The study suggests interleukin-1α to be an ancient cytokine given its presence in organisms that evolved significantly earlier than mammals.


Key words

interleukin-1α invertebrates ganglia glia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beck, G., O'Brien, R. F., and Habicht, G. S. (1989). Characterization of interleukin-1 from invertebrates. In.Defense Molecules (J. Marchalonis and C. Reinisch, Eds.), Alan R. Liss, New York, pp. 125–132.Google Scholar
  2. Blanckaert, V., Hondermark, H., and Boilly-Marer, Y. (1991). Differential expression of fibroblast growth factor-like molecules and their receptor: Putative role in tissue regeneration and growth in annelids.Dev. Biol. 231–12.Google Scholar
  3. De Biasi, S., and Vitellaro-Zuccarello, L. (1987). Distribution of 5-HT-immunoreactivity in the pedal ganglia ofMytilus galloprovincialis.Cell Tissue Res. 249111–116.Google Scholar
  4. Dhainaut-Courtois, N. G., Tramu, J.-C., Beauvillain, M., and Masson, M. (1986). A qualitative approach of the Nereis neuropeptides by use of antibodies to several vertebrate peptides.Neurochem. Int. 8(3):327–338.Google Scholar
  5. Fontana, A., Kristensen, F., Dubs, R., Gemsa, D., and Weher, E. (1982). Production of prostaglandin E and interleukin-1 like factors by cultured astrocytes and C-6 glioma cells.J. Immunol. 1292413–2419.Google Scholar
  6. Hughes, T. K., Jr., Smith, E. M., Cadet, P., Sinisterra, J., Leung, M. K., Shipp, M. A., Scharrer, B., and Stefano, G. B. (1990). Interaction of immunoactive monokines (IL-1 and TNF) in the bivalve molluscMytilus edulis.Proc. Natl. Acad. Sci. USA 874426–4429.Google Scholar
  7. Hughes, T. K., Smith, E. M., and Stefano, G. B. (1991). Detection of immunoreactive Interleukin-6 in invertebrate hemolymph and nervous tissue.Prog. NeuroImmuneEndocrin. 4234–239.Google Scholar
  8. Merrill, J. E. (1987). Microglia: Neural cells responsive to lymphokines and growth factors.Immunol. Today 8146–150. Nicaise, G. (1973). The gliointerstitial system of molluscs.Int. Rev. Cytol. 34:251–332.Google Scholar
  9. Paemen, L., Schoofs, L., and De Loof, A. (1992). Localization of Lom-AG-myotropic I in the brain and male accessory glands of the locust,Locusta migratoria. Cell Tissue Res. (in press).Google Scholar
  10. Pentreath, V. U. (1986). Functions of invertebrate glia. InNervous Systems in Invertebrates (M. A. Ali, Ed.), Plenum Press, New York, pp. 61–103.Google Scholar
  11. Porchet-Hennere, E. (1990). Cooperation between different coelomocyte populations during the encapsulation response ofNereis diversicolor.J. Invert. Pathol. 56353–361.Google Scholar
  12. Porchet-Hennere, E., and Vernet, G. (1991). Cellular immunity in annelids: Melanin production by a sub population of granulocytes.Cell Tissue Res. (in press).Google Scholar
  13. Porchet-Hennere, E., M'Berri, M., Dhainaut, A., and Porchet, M. (1987). Ultrastructural study of the encapsulation response ofNereis diversicolor.Cell Tissue Res. 248463–471.Google Scholar
  14. Radojcic, T., and Pentreath, V. V. (1979). Invertebrate glia.Prog. Neurobiol. 12115–179.Google Scholar
  15. Scarborough, D. E., Lee, S. L., and Reichlin, S. (1989). Effects of interleukin-1 on somatostatin synthesis in fetal rat brain cell cultures. InNeuroimmune Networks: Physiology and Diseases (E. J. Goetzl and N. H. Spector, Eds.), Alan R. Liss, New York, pp. 83–88.Google Scholar
  16. Scharrer, B. (1978). Peptidergic neuron: Facts and trends.Gen. Comp. Endocrinol. 3450–62.Google Scholar
  17. Stefano, G. B. (1991). Conformational matching a stabilizing signal system factor during evolution: Additional evidence in comparative neuroimmunology.Adv. Neuroimmunol. 171–82.Google Scholar
  18. Stefano, G. B., and Aiello, E. (1975). Histoflurescence localization of serotonin and dopamine in the nervous system and gill of Mytilus edulis (Bivalvia).Biol. Bull. 148141–156.Google Scholar
  19. Stefano, G. B., and Martin, R. (1983). Enkephalin-like immunoreactivity in the pedal ganglion of Mytilus edulis (bivalvia) and its proximity to dopamine containing structures.Cell. Tissue Res. 230147–153.Google Scholar
  20. Stefano, G. B., Catapane, E. J., and Aiello, E. (1976). Dopaminergic agents: Influence in molluscan nervous system.Science 194539–541.Google Scholar
  21. Stefano, G. B., Hall, B., Makman, M. H., and Dvorkin, B. (1981). Opioids inhibit potassiumstimulated dopamine release in the marine musselMytilus edulis and in the cephalopodOctopus bimaculatis.Science 213928–930.Google Scholar
  22. Stefano, G. B., Leung, M. K., Zhao, X., and Scharrer, B. (1989a). Evidence for the involvement of opioid neuropeptides in the adherence and migration of immunocompetent invertebrate hemocytes.Proc. Natl. Acad. Sci. USA 86626–630.Google Scholar
  23. Stefano, G. B., Cadet, P., and Scharrer, B. (1989b). Stimulatory effects of opioid neuropeptides on locomotory activity and conformational changes in invertebrate and human immunocytes: Evidence for a subtype of delta receptor.Proc. Natl. Acad. Sci. USA 866307–6311.Google Scholar
  24. Stefano, G. B., Zhao, X., Bailey, D., Metlay, M., and Leung, M. K. (1989c). High affinity dopamine binding to mouse thymocytes and Mytilus edulis (Bivalvia) hemocytes.J. Neuroimmunol. 21(1):67–74.Google Scholar
  25. Stefano, G. B., Cadet, P., Sinisterra, J., Charles, R., Barnett, J., Kuruvilla, S., and Aiello, E., (1990). Functional neural anatomy ofMytilus Edulis: Monoaminergic and opioid localization. InNeurobiology of Mytilus edulis (G. B. Stefano, Ed.), Manchester University Press, Manchester, England, pp. 38–56.Google Scholar
  26. Stefano, G. B., Smith, E. R., and Hughes, T. K. (1991a). Opioid induction of immunoreactive interleukin-1 inMytilus edulis and human immunocytes: An interleukin-1-like substance in invertebrate neural tissue.J. Neuroimmunol. 3229–34.Google Scholar
  27. Stefano, G. B., Cadet, P., Dokun A., and Scharrer, B. (1991b). A neuroimmunoregulatory-like mechanism responding to electrical shock in the marine bivalveMytilus edulis.Brain Behav. Immun. 4323–329.Google Scholar
  28. Vandesande, F. (1983). Immunocytochemical double staining techniques. InNeuroimmunocytochemistry (E. Cuello, Ed.), John Wiley and Sons, New York, pp. 257–272.Google Scholar
  29. Vitellaro-Zuccarello, L., and De Biasi, S. (1990). Ultrastructure of the ganglia and submicroscopial localization of putative neurotransmitters. InNeurobiology of Mytilus edulis (G. B. Stefano, Ed.), Manchester University Press, Manchester, England, pp. 57–73.Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • Liesbet R. Paemen
    • 1
  • Eliane Porchet-Hennere
    • 2
  • Maryse Masson
    • 2
  • Michael K. Leung
    • 1
  • Thomas K. HughesJr.
    • 3
  • George B. Stefano
    • 1
  1. 1.Multidisciplinary Center for the Study of Aging and Old Westbury Neuroscience InstituteState University of New York at Old WestburyOld WestburyUSA
  2. 2.Laboratoire de Biologie animaleUniversity of Science and Technology of Lille Flanders ArtoisVilleneuve D'AscoFrance
  3. 3.Department of MicrobiologyUniversity of Texas Medical BranchGalvestonUSA

Personalised recommendations