Cellular and Molecular Neurobiology

, Volume 11, Issue 4, pp 397–413 | Cite as

γ-interferon, retinoic acid, and cytosine arabinoside induce neuroblastoma differentiation by different mechanisms

  • M. Ponzoni
  • M. Lanciotti
  • P. G. Montaldo
  • P. Cornaglia-Ferraris


  1. 1.

    The effects of gamma-interferon (γ-IFN), retinoic acid (RA), and cytosine arabinoside (ARA-C) on the growth, morphology, and phenotype of the human neuroblastoma (NB) cell lines, LAN-1 and GI-ME-N, have been extensively tested.

  2. 2.

    RA,γ-IFN, and ARA-C induced a dose-dependent morphological differentiation and growth inhibition, without affecting cell viability. Cells exposed to 10−6M RA or 1000 U/mlγ-IFN significantly decreased their growth rate within the first 24 and 48 hr of culture, respectively. Cells became smaller and polygonal and sprouted long cellular processes with varicosites along their courses. In contrast, ARA-C-differentiated cells were larger and flattened, with few elongated dendritic processes.

  3. 3.

    Analysis of membrane and cytoskeletal markers by immunofluorescence and Western blot showed several changes in NB-specific antigen expression after 5 days of treatment with all inducing agents. Analysis of labeled phosphatidylinositol metabolites from prelabeled cells showed, within 1 min of treatment with RA, a rapid decrease in inositol 1,4,5-trisphosphate and of 1,2-diacylglicerol levels. No changes in inositol phospholipid metabolism were observed inγ-IFN- or ARA-C-treated cells.

  4. 4.

    We conclude that RA-induced decrease in phosphatidylinositol (PI) hydrolysis is not likely to be a consequence of the acquisition of a different phenotype, as its changes precede the acquisition of neuronal markers. In addition,γ-IFN and ARA-C, both inducing a mature phenotype, did not affect PI hydrolysis.

  5. 5.

    Decreased PI hydrolysis seems to be sufficient, although not necessary, to commit NB cells to neuronal differentiation. Analysis of molecular mechanisms associated with NB cell differentiation may be helpful to clarify the potential of various biological agents in affecting the development of the neural cell.


Key words

retinoic acid gamma-interferon cytosine arabinoside PI hydrolysis neuroblastoma cell differentiation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allan, P. M., Garson, J. A., Harper, E. I., Asser, U., Coakham, H. B., Brownell, B., and Kemshead, J. T. (1983). Biological characterization and clinical applications of a monoclonal antibody recognizing an antigen restricted to neuroectodermal tissues.Int. J. Cancer 31591–598.Google Scholar
  2. Bindel, L. I., Frankfurter, A., and Rabhun, L. I. (1985). The distribution of Tau in the mammalian central nervous system.J. Cell Biol. 1011371–1378.Google Scholar
  3. Bonvini, E., Ruscetti, F. W., Ponzoni, M., Hoffman, T., and Farrar, W. L. (1987). Interleukin 2 rapidly stimulates synthesis and brack-down of polyphosphoinositides in interleukin 2-dependent murine T cell lines.J. Biol. Chem. 2624160–4164.Google Scholar
  4. Bottenstein, J. E. (1981). Differentiated properties of neuronal cell lines. InFunctionally Differentiated cell Line (G. H. Sato, Ed.), Alan Liss, New York, pp. 155–184.Google Scholar
  5. Clemens, M. J., and McNurean, M. A. (1985). Regulation of cell proliferation and differentiation by interferons.Biochem. J. 226345–360.Google Scholar
  6. Cornaglia-Ferraris, P., Ponzoni, M., Montaldo, P., Mariottini, G. L., Donti, E., Di Martino, D., and Tonini, G. P. (1990). A new human highly tumorigenic neuroblastoma cell line with undetectable expression of N-myc.Pediat. Res. 27(1):1–6.Google Scholar
  7. Couchie, D., Faivre-Bauman, A., Puymirat, J., Guilleminot, J., Tixier-Vidal, A., and Nunez, J. (1986). Expression of microtuble-associated proteins during the early stages of neurite extension by brain neurons cultured in a defined medium.J. Neurochem. 471255–1261.Google Scholar
  8. Cushing, H., and Wolbach, B. B. (1927). The transformation of a malignant paravertebral sympathicoblastoma into a benign ganglioneuroma.Am. J. Pathol 3203–207.Google Scholar
  9. D'Angio, G. J., Evans, A. E., and Koop, C. E. (1971). Special pattern of widespread neuroblastoma with a favorable prognosis. Lancet11046–1049.Google Scholar
  10. Dean, N. M., and Moyer, J. D. (1987). Separation of multiple isomers of inositol phosphates formed in GH3 cells.Biochem. J. 242(2):361–366.Google Scholar
  11. De Camilli, P., Miller, P. E., Novone, F., Theurkang, N. E., and Voller, R. B. (1984). Distribution of microtubule-associated protein 2 in the nervous system of the rat studied by immunofluorescence.Neuroscience 11819–846.Google Scholar
  12. Denk, H., Weybora, W., Ratschak, A., Sohar, R., and Franke, W. W. (1985). Distribution of vimentin, cytokeratin and desmosomal-plaque proteins in human nephroblastoma as revealed by specific antibodies: Co-existence of cell groups of different degrees of epithelial differentiation.Differentiation 2988–97.Google Scholar
  13. Drubin, D. G., Feinstein, S. C., Shooter, E. M., and Kirschner, M. W. (1985). Nerve growth factor induced neurite outgrowth in PC12 cells involves the coordinate indication of microtubule assembly promoting factors.J. Cell Biol. 1011799–1808.Google Scholar
  14. Evans, A. E., Chatten, J., D'Angio, G. J., Gerson, J. M., Robinson, J., and Schnaufer, I. (1980). A review of 17 IV-S neuroblastoma patients at the Children's Hospital of Philadelphia.Cancer 45833–838.Google Scholar
  15. Evans, J. P. M., Mire-Sluis, A. R., Hoffbrand, A. V., and Wickremasinghe, R. G. (1990). Binding of G-CSF, GM-CSF, tumor necrosis factor-α, andγ-interferon to cell surface receptors on human myeloid leukemia cells triggered rapid tyrosine and serine phosphorylation of a 75 Kd protein.Blood 75(1):88–95.Google Scholar
  16. Furth, J. J., and Cohen, S. S. (1968). Inhibition of mammalian DNA polymerase by the 5′-triphosphate of 1-β-D-arabinofuranosylcytosine and the 5′-triphosphate of 9-β-D-arabinofuranosyladenine.Cancer Res. 282061–2067.Google Scholar
  17. Gariglio, M., Franco, A., Cavallo, G., and Landolfo, S. (1988). Evidence for a GTP-binding protein involved in interferon-γ transduction signal.J. Interferon Res. 8463–472.Google Scholar
  18. Giguere, V., Ong, E. S., Segui, P., and Evans, R. M. (1987). Identification of a receptor for the morphogen retinoic acid.Nature 330444–450.Google Scholar
  19. Giulian, D., and Baker, T. J. (1986). Characterization of ameboid microglia isolated from developing mammalian brain.J. Neurosci. 62163–2178.Google Scholar
  20. Giulian, D., and Lachman, L. B. (1985). Interleukin-1 stimulates astroglial proliferation after brain injury.Science 228497–499.Google Scholar
  21. Hattori, T., Pack, M., Bougnoux, P., Chang, Z. L., and Hoffman, T. (1983). Interferon induced differentiation of U937 cells. Comparison with other agents which promote differentiation of human myeloid or monocyte-like cell lines.J. Clin. Invest. 72237–244.Google Scholar
  22. Higuchi, T., Tanaka, A., Hiratani, H., Watanabe, H., and Imanishi, J. (1989). Variant human neuroblastoma cell lines resistant to the differentiation-inducing effect of interferon-gamma.Cell struct. Funct. 14(4):439–445.Google Scholar
  23. Ikegaki, N., Polakoya, K., Prince, L., and Kenneth, R. H. (1988). InAdvances in Neuroblastoma Research 2 (A. E. Evans,et al., Eds.), Alan Liss, New York, pp. 133–144.Google Scholar
  24. Ishii, D. N., Fibach Yamasaki, H., and Weinstein, J. B. (1978). Tumor promoters inhibit morphological differentiation in cultured mouse neuroblastoma cells.Science 200556–559.Google Scholar
  25. Jacobs, M., Choo, O. L., and Thomas, C. (1982). Vimentin and 70K neurofilament protein coexist in embryonic neurones from spinal ganglia.J. Neurochem 38969–977.Google Scholar
  26. Kimhi, Y., Palfrey, C., Spector, I., Barak, Y., and Listauer, U. Z. (1976). Maturation of neuroblastoma cells in the presence of dimethyl-sulphoxide.Proc. Natl. Acad. Sci. USA 73462–466.Google Scholar
  27. Laemmli, U. K. (1970). Cleavage of the structure proteins during the assembly of the head of bacteriophage T4.Nature 227680–683.Google Scholar
  28. Lanciotti, M., Cornaglia-Ferraris, P., and Ponzoni, M. (1989). Phosphatidylinositol turnover is not a general regulator of neuroblastoma cell differentiation: Comparison between two differentiating agents, retinoic acid andγ-interferon.FEBS Lett. 243285–288.Google Scholar
  29. Lazarides, E. (1982). Intermediate filaments: A chemically heterogeneous developmentally regulated class of proteins.Annu. Rev. Biochem. 51219–250.Google Scholar
  30. Legault-Demare, L., Zeitoun, Y., Lando, D., Lamands, N., Grasso, A., and Gros, F. (1980). Expression of a specific neuronal protein 14-3-2, during in vitro differentiation of neuroblastoma cells.Exp. Cell Res. 125233–239.Google Scholar
  31. Levi-Montalcini, R. (1989). The nerve growth factor 35 years later.Science 2371154–1162.Google Scholar
  32. Liem, R. K. H., Yen, S. H., Slaomon, G. D., and Shelanski, M. L. (1978). Intermediate filaments in nervous tissue.J. Cell Biol. 79637–645.Google Scholar
  33. Lindsey, R. M. (1988). Nerve growth factor (NGF, BDNF) enhance axonal regeneration but are not required for survival of adult sensory neurons.J. Neurosci. 8(7):2394–2405.Google Scholar
  34. Lipinski, M., Braham, K., Philip, I., Wiels, J., Philip, T., Goridis, C., Lenoir, G. M., and Turs, T. (1986). Neuroectoderm-associated antigens on Ewing's sarcoma cell lines.Cancer Res. 47183–187.Google Scholar
  35. Ljiungdahl, A., Olsson, T., Van der Miede, P. H., Holmdahl, R., Klareskog, L., and Högeberg, B. (1989). Interferon-gamma-like immunoreactivity in certain neurons of the central and peripheral nervous system.J. Neurosci Res. 24(3):451–456.Google Scholar
  36. Longo, L., Christiansen, H., Paulsen, P., Cornaglia-Ferraris, P., and Lampert, F. (1988). N-myc amplification at chromosome band 1p32 in neuroblastoma cells as investigated by in-situ hybridization.J. Cancer Res. Clin. Oncol. 114636–640.Google Scholar
  37. Mayor, P. P., Egan, E. M., Herrick, D. J., and Kufe, D. W. (1982). Effect of ARA-C incorporation on deoxyribonucleic acid synthesis in cells.Biochem Pharmacol. 312937–2940.Google Scholar
  38. Parodi, M. T., Varesio, I., and Tonini, G. P. (1989a). Morphological changes and cellular differentiation induced by cis-plantinum in human neuroblastoma cells.Cancer Chemother. Pharmacol. 25114–116.Google Scholar
  39. Parodi, M. T., Cornaglia-Ferraris, P., and Ponzoni, M. (1989b). Effect ofγ-interferon on the growth, morphology and membrane and cytoskeletal proteins expression of LAN-1 cells.Exp. Cell Res. 185327–341.Google Scholar
  40. Petkovich, M., Brand, N. J., Krust, A., and Chambon, P. (1987). A human retinoic acid receptor belongs to the family of nuclear receptors.Nature 330444–450.Google Scholar
  41. Ponzoni, M., and Lanciotti, M. (1990). Retinoic acid rapidly decrease phosphatidylinositol turnover during neuroblastoma cell differentiation.J. Neurochem. 54(2):540–546.Google Scholar
  42. Ponzoni, M., Lanciotti, M., Melodia, A., Casalaro, A., and Cornaglia-Ferraris, P. (1989). MOrphologic and phenotypic changes of human neuroblastoma cells in culture induced by cytosine arabinoside.Exp. Cell Res. 181226–237.Google Scholar
  43. Radeke, M. J., Misko, T. P., and Shooter, E. M. (1987). Nerve growth factor and its receptor in neural development: Isolation of a cDNA clone coding for the rat fast nerve growth factor receptor. InMolecular Neuroscience. Expression of Neural Genes (F. Wong, D. C. Eaton, D. A. Konkel, and J. R. Perez-Polo, Eds.), Alan R. Liss, New York, pp. 63–74.Google Scholar
  44. Reynolds, C. P., Biedler, J. L., Spengler, B. A., Reynolds, D. A., Ross, R. A., Frenkel, E. P., and Smith, R. G. (1986). Characterization of human neuroblastoma cell lines established before and after therapy.J. Natl. Cancer Inor. 76375–387.Google Scholar
  45. Rosenblatt, H., Seeger, R. C., and Wells, J. A. (1982). A monoclonal antibody reactive with neuroblastomas but not normal bone marrow.Clin. Res. 31:68A.Google Scholar
  46. Saneto, R. P., Chiappelli, F., and de Vellis, J. (1987). Interleukin-2 inhibition of oligodendrocyte progenitor cell proliferation depends on expression of the TAC receptor.J. Neurosci. Res. 18147–154.Google Scholar
  47. Schengrund, C. L., and Scheffler, B. A. (1982). Biochemical and morphological study of adriamycininduced changes in murine neuroblastoma cells.Oncology 39185–190.Google Scholar
  48. Schulz, G., Cheresh, D. A., Varki, N. M., Yu, A., Staffileno, L. K., and Reisfeld, R. A. (1984). Detection of ganglioside GD2 in tumor tissues and sera of neuroblastoma patients.Cancer Res. 445914–5920.Google Scholar
  49. Seeger, R. C., Danon, Y. L., Rayner, S. A., and Hoover, F. (1982). Definition of a Thy-1 determinant on human neuroblastoma, glioma, sarcoma and teratoma cells with a monoclonal antibody.J. Immunol. 128983–989.Google Scholar
  50. Shaw, G., and Weber, K. (1982). Differential expression of neurofilament triplet proteins in brain development.Nature 298277–279.Google Scholar
  51. Sidell, N. (1982). Retinoic acid-induced growth inhibition and morphologic differentiation of human neuroblastoma cells in vitro.J. Natl. Cancer Inst. 68589–593.Google Scholar
  52. Smith, R. G., and Reynolds, C. P. (1987). Monoclonal antibody recognizing a human neuroblastoma-associated antigen.Diag. Clin. Immunol. 5209–220.Google Scholar
  53. Strumia, M. (1963). A rapid universal blood stain May-Grünwald-Giemsa in one solution.J. Lab. Clin. Med. 21930–935.Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • M. Ponzoni
    • 1
  • M. Lanciotti
    • 1
  • P. G. Montaldo
    • 1
  • P. Cornaglia-Ferraris
    • 1
  1. 1.Pediatric Oncology Research LaboratoryG. Gaslini Children's HospitalGenovaItaly

Personalised recommendations