Cellular and Molecular Neurobiology

, Volume 6, Issue 4, pp 363–379 | Cite as

Electrophysiological actions of somatostatin (SRIF) in hippocampus: Anin vitro study

  • Alan L. Mueller
  • Dennis D. Kunkel
  • Phillip A. Schwartzkroin


  1. 1.

    The electrophysiological actions of somatostatin (somatotropin release inhibiting factor; SRIF) were investigated in thein vitro hippocampal slice preparation. Intracellular recordings were obtained from pyramidal neurons in area CA1 in slices of hippocampus from guinea pigs and rabbits.

  2. 2.

    Somatostatin, applied via micropressure ejection to CA1 pyramidal-cell somata, was primarily excitatory. The effects, however, were quite variable, with nearly all cells displaying pronounced tachyphylaxis. A majority of cells was depolarized by SRIF, but hyperpolarizations or biphasic depolarization/hyperpolarization responses were also recorded. Only minimal conductance changes were associated with the SRIF-induced voltage changes.

  3. 3.

    Depletion of SRIF, by injection of the intact animal with cysteamine several hours before preparing slices, resulted in no obvious abnormalities in hippocampal slice electrophysiology.

  4. 4.

    Our results obtained with application of exogenous SRIF are consistent with the concept that SRIF acts as an excitatory neurotransmitter/neuromodulator in hippocampus. However, our attempts to demonstrate endogenous SRIF action have thus far been unsuccessful.


Key words

somatostatin hippocampal slice excitation local circuit neurons interneurons 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alger, B. E., and Nicoll, R. A. (1982). Pharmacological evidence for two kinds of GABA receptors on rat hippocampal pyramidal cells studiedin vitro.J. Physicol. (Lond.)328125–141.Google Scholar
  2. Andersen, P. (1975). Organization of hippocampal neurons and their interconnections. InThe Hippocampus, Structure and Development, Vol. I (Isaacson, R. L., and Pribam, K. H., Eds.), Plenum Press, New York, pp. 155–175.Google Scholar
  3. Andersen, P., Holmqvist, E., and Voorhoeve, P. E. (1966). Entorhinal activation of dentate granule cells.Acta Physiol. Scand. 66448–460.Google Scholar
  4. Andersen, P., Bliss, T. V. P., and Skrede, K. K. (1971). Unit analysis of the hippocampal population spike.Exp. Brain Res. 13208–221.Google Scholar
  5. Andersen, P., Dingledine, R., Gjerstad, L., Langmoen, I. A., and Mosfeldt-Laursen, A. (1980). Two different responses of hippocampal pyramidal cells to application of gamma-aminobutyric acid.J. Physiol. (Lond.)305279–296.Google Scholar
  6. Ashwood, T. J., Lancaster, B., and Wheal, H. V. (1984).In vivo andin vitro studies on putative interneurons in the rat hippocampus: Possible mediators of feed-forward inhibition.Brain Res. 293279–291.Google Scholar
  7. Beal, M. F., and Martin, J. B. (1984). Depletion of striatal somatostatin by local cysteamine injection.Brain Res. 308319–324.Google Scholar
  8. Benoit, R., Ling, N., Alford, B., and Guilleman, R. (1982). Seven peptides derived from pro-somatostatin in rat brain.Biochem. Biophys. Res. Comm. 107944–950.Google Scholar
  9. Benoit, R., Bohlen, P., Esch, F., and Ling, N. (1984). Neuropeptides derived from prosomatostatin that do not contain the somatostatin 1-14 sequence.Brain Res. 31123–29.Google Scholar
  10. Brownstein, M., Arimura, A., Sato, H., Schally, A. V., and Kizer, J. S. (1975). The regional distribution of somatostatin in the rat brain.Endocrinology 961456–1461.Google Scholar
  11. Catalan, R. E., Aragones, M. D., and Martinez, A. M. (1979). Somatostatin effect on cyclic AMP and cyclic GMP levels in rat brain.Biochim. Biophys. Acta 586213–216.Google Scholar
  12. Catalan, R. C., Martinez, A. M., and Aragones, M. D. (1983). Inhibition of cyclic AMP-dependent protein kinase by somatostatin in slices of mouse brain: Dependence on extracellular calcium.Neuropharmacology 22641–645.Google Scholar
  13. Chesselet, M.-F., and Reisine, T. D. (1983). Somatostatin regulates dopamine release in rat striatal slices and cat caudate nuclei.J. Neurosci. 3232–236.Google Scholar
  14. Delfs, J. R., and Dichter, M. A. (1983). Effects of somatostatin on mammalian cortical neurons in culture: Physiological actions and unusual dose-response characteristics.J. Neurosci. 31176–1188.Google Scholar
  15. Dodd, J., and Kelly, J. S. (1978). Is somatostatin an excitatory transmitter in the hippocampus?Nature 273674–675.Google Scholar
  16. Dorn, A., Bernstein, H.-G., Hahn, H.-J., and Kostmann, G. (1979). Occurrence of somatostatin-like immunoreactivity (SLI) in the dorsal hippocampus of the sand rat (Psammomys obesus).Acta Histochem. 65276–278.Google Scholar
  17. Epelbaum, J., Brazeau, P., Tsang, D., Brawer, J., and Martin, J. B. (1977). Subcellular distribution of radioimmunoassayable somatostatin in rat brain.Brain Res. 126309–323.Google Scholar
  18. Epelbaum, J., Arancibia, L. T., Kordon, C., and Enjalbert, A. (1982). Characterization, regional distribution, and subcellular distribution of125I-Tyr1-somatostatin binding sites in rat brain.J. Neurochem. 381515–1523.Google Scholar
  19. Feldman, S. C., Dreyfus, C. F., and Lichtenstein, E. S. (1982). Somatostatin neurons in the rodent hippocampus: Anin vitro andin vivo immunocytochemical study.Neurosci. Lett. 3329–34.Google Scholar
  20. Finley, J. C. W., Maderdrut, J. L., Roger, L. J., and Petrusz, P. (1981). The immunocytochemical localization of somatostatin-containing neurons in the rat central nervous system.Neuroscience 62173–2192.Google Scholar
  21. Gray, T. S. (1983). The morphology of somatostatin-immunoreactive neurons in the lateral nucleus of the rat amygdala.Peptides 4663–668.Google Scholar
  22. Hendrickson, A. E., Hunt, S. P., and Wu, J.-Y. (1981). Immunocytochemical localization of glutamic acid decarboxylase in monkey striate cortex.Nature 292605–607.Google Scholar
  23. Hotson, J. R., Prince, D. A., and Schwartzkroin, P. A. (1979). Anomalous inward rectification in hippocampal neurons.J. Neurophysiol. 42889–895.Google Scholar
  24. Ioffe, S., Havlicek, V., Friesen, H., and Chernick, V. (1977). The excitatory effect of iontophoretically applied somatostatin (SRIF) on cortical neurons in awake unanesthetized animals.Fed. Proc. 36364.Google Scholar
  25. Ioffe, S., Havlicek, V., Friesen, H., and Chernick, V. (1978). Effect of somatostatin (SRIF) and L-glutamate on neurons of the sensorimotor cortex in awake habituated rabbits.Brain Res. 153414–418.Google Scholar
  26. Iversen, L. L., Iversen, S. D., Bloom, F., Douglas, C., Brown, M., and Vale, W. (1978). Calcium-dependent release of somatostatin and neurotensin from rat brainin vitro.Nature 273161–163.Google Scholar
  27. Katayama, Y., and North, R. A. (1980). The action of somatostatin on neurons of the myenteric plexus of the guinea pig ileum.J. Physiol. Lond. 303315–323.Google Scholar
  28. Kobayashi, R. M., Brown, M., and Vale, W. (1977). Regional distribution of neurotensin and somatostatin in rat brain.Brain Res. 126584–588.Google Scholar
  29. Kohler, C., and Chan-Palay, V. (1982). Somatostatin-like immunoreactive neurons in the hippocampus: An immunocytochemical study in the rat.Neurosci. Lett. 34259–264.Google Scholar
  30. Kondo, H., Katayama, Y., and Yui, R. (1982). On the occurrence and physiological effect of somatostatin in the ciliary ganglion of cats.Brain Res. 247141–144.Google Scholar
  31. Kunkel, D. D., Schwartzkroin, P. A., and Hendrickson, A. E. (1983). Immunocytochemistry of somatostatin in CA1 of rabbit hippocampus.Soc. Neurosci. Abstr. 9218.Google Scholar
  32. Kunkel, D. D., Hendrickson, A. E., Wu, J.-Y., and Schwartzkroin, P. A. (1986). Glutamic acid decarboxylase (GAD) immunocytochemistry of developing rabbit hippocampus.J. Neurosci. 6541–552.Google Scholar
  33. Lee, S. L., Havlicek, V., Panerai, A. E., and Friesen, H. G. (1978). High K+-induced release of somatostatin from the cortical preparation of rat brain.Experientia 35351–352.Google Scholar
  34. Leroux, P., and Peletier, G. (1984). Radioautographic localization of somatostatin-14 and somatostatin-28 binding sites in the rat brain.Peptides 5503–506.Google Scholar
  35. Lomo, T. (1971). Patterns of activation in a monosynaptic cortical pathway: The perforant path input to the dentate area of the hippocampal formation.Exp. Brain Res. 1218–45.Google Scholar
  36. Mancillas, J. R., Siggins, G. R., and Bloom, P. E. (1985). Somatostatin-14 directly depresses neuronal discharge but enhances excitatory responses to acetylcholine in the rat cortex and hippocampus.Soc. Neurosci. Abstr. 11341.Google Scholar
  37. McCaman, R. E., McKenna, D. G., and Ono, J. K. (1977). A pressure system for intracellular and extracellular ejections of picoliter volumes.Brain Res. 136141–147.Google Scholar
  38. Morrison, J. H., Benoit, R., Magistretti, P. J., Ling, N., and Bloom, F. E. (1982). Immunohistochemical distribution of pro-somatostatin-related peptides in hippocampus.Neurosci. Lett. 3417–142.Google Scholar
  39. Morrison, J. H., Benoit, R., Magistretti, P. J., and Bloom, F. E. (1983). Immunohistochemical distribution of pro-somatostatin-related peptides in cerebral cortex.Brain Res. 262344–351.Google Scholar
  40. Mueller, A. L., Taube, J. S., and Schwartzkroin, P. A. (1984). Development of hyperpolarizing inhibitory postsynaptic potentials and hyperpolarizing response to gamma-aminobutyric acid in rabbit hippocampus studiedin vitro.J. Neurosci. 4860–867.Google Scholar
  41. Nemeth, E. F., and Cooper, J. R. (1979). Effect of somatostatin on acetylcholine release from rat hippocampal synaptosomes.Brain Res. 165166–170.Google Scholar
  42. Olpe, H.-R., Balcar, V. J., Bittiger, H., Rink, H., and Sieber, P. (1980). Central actions of somatostatin.Eur. J. Pharmacol. 63127–133.Google Scholar
  43. Palkovits, M., Brownstein, M. J., Eiden, L. E., Beinfeld, M. C., Russell, J., Arimura, A., and Szabo, S. (1982). Selective depletion of somatostatin in rat brain by cysteamine.Brain Res. 240178–180.Google Scholar
  44. Petrusz, P., Sar, M., Grossman, G. H., and Kizer, J. S. (1977). Synaptic terminals with somatostatin-like immunoreactivity in the rat brain.Brain Res. 137181–187.Google Scholar
  45. Pittman, Q.J., and Siggins, G. R. (1981). Somatostatin hyperpolarizes hippocampal pyramidal cellsin vitro.Brain Res. 221402–408.Google Scholar
  46. Renaud, L. P., Martin, J. B., and Brazeau, P. (1975). Depressant action of TRH, LH-RH, and somatostatin on actitivy of central neurons.Nature 255233–235.Google Scholar
  47. Reubi, J.-C., Perrin, M. H., Rivier, J. E., and Vale, W. (1981). High affinity binding sites for a somatostatin-28 analog in rat brain.Life Sci. 282191–2198.Google Scholar
  48. Roberts, G. W., Woodhams, P. L., Polak, J. M., and Crow, T. J. (1984). Distribution of neuropeptides in the limbic system of the rat: The hippocampus.Neuroscience 1135–77.Google Scholar
  49. Sagar, S. M., Landry, D., Millard, W. J., Badger, T. M., Arnold, M. A., and Martin, J. B. (1982). Depletion of somatostatin-like immunoreactivity in the rat central nervous system by cysteamine.J. Neurosci. 2225–231.Google Scholar
  50. Schwartzkroin, P. A. (1975). Characteristics of CA1 neurons recorded intracellularly in the hippocampalin vitro slice preparation.Brain Res. 85423–436.Google Scholar
  51. Schwartzkroin, P. A. (1977). Further characteristics of hippocampal CA1 cellsin vitro.Brain Res. 12853–68.Google Scholar
  52. Schwartzkroin, P. A. (1982). Development of rabbit hippocampus: Physiology.Dev. Brain Res. 2469–486.Google Scholar
  53. Schwartzkroin, P. A., and Mathers, L. H. (1978). Physiological and morphological identification of a nonpyramidal hippocampal cell type.Brain Res. 1571–10.Google Scholar
  54. Schwartzkroin, P. A., and Mueller, A. L. (1986). Electrophysiology of hippocampal neurons. InCerebral Cortex (Isaacson, R. L., and Pribram, K. H., Eds.), Plenum Press, New York (in press).Google Scholar
  55. Siggins, G. R., and French, E. D. (1984). Pro-somatostatin-related peptides alter the discharge rate of rat cortical and hippocampal neuronsin vivo: An iontophoretic study.Soc. Neurosci. Abstr. 10810.Google Scholar
  56. Siggins, G. R., McGinty, J. F., Morrison, J. H., Pittman, Q. J., Zeiglgansberger, W., Magistretti, P. J., and Gruol, D. L. (1982). The role of neuropeptides in the hippocampal formation. InRegulatory Peptides: From Molecular Biology to Function (Costa, E., and Trabucchi, M., Eds.), Raven Press, New York, pp. 413–422.Google Scholar
  57. Somogyi, P., Hodgson, A. J., Smith, A. D., Nunzi, M. G., Gorio, A., and Wu, J.-Y. (1984). Different populations of GABAergic neurons in the visual cortex and hippocampus of cat contain somatostatin-or cholecystokinin-immunoreactive material.J. Neurosci. 42590–2603.Google Scholar
  58. Srikant, C. B., and Patel, Y. C. (1981). Somatostatin receptors: Identification and chracterization in rat brain membranes.Proc. Natl. Acad. Sci. 783930–3934.Google Scholar
  59. Sternberger, L. A. (1979).Immunocytochemistry, Wiley, New York.Google Scholar
  60. Tan, A. T., Tsang, D., Renaud, L. P., and Martin, J. B. (1977). Effect of somatostatin on calcium transport in guinea pig cortex synaptosomes.Brain Res. 123193–196.Google Scholar
  61. Tanaka, S., and Tsujimoto, A. (1981). Somatostatin facilitates the serotonin release from rat cerebral cortex, hippocampus, and hypothalamus slices.Brain Res. 208219–222.Google Scholar
  62. Tornquist, K., Uddman, R., Sundler, F., and Ehinger, B. (1982). Somatostatin and VIP neurons in the retinae of different species.Histochemistry 76137–146.Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • Alan L. Mueller
    • 1
    • 3
  • Dennis D. Kunkel
    • 1
  • Phillip A. Schwartzkroin
    • 1
    • 2
  1. 1.Department of Neurological SurveyUniversity of WashingtonSeattleUSA
  2. 2.Department of Physiology and BiophysicsUniversity of WashingtonSeattleWashington
  3. 3.Department 47H-AP10Abbott LaboratoriesAbbott ParkUSA

Personalised recommendations