Cellular and Molecular Neurobiology

, Volume 8, Issue 3, pp 259–268 | Cite as

Control of exocytosis from adrenal chromaffin cells

  • Ronald W. Holz


  1. 1.

    Calcium-dependent exocytosis of catecholamines from intact and digitonin-permeabilized bovine adrenal chromaffin cells was investigated.

  2. 2.

    45Ca2+ uptake and secretion induced by nicotinic stimulation or depolarization in intact cells were closely correlated. The results provide strong support for Ca2+ entry being the trigger for exocytosis.

  3. 3.

    Experiments in which the H+ electrochemical gradient across the intracellular secretory granule (chromaffin granule) membrane was altered indicated that the gradient does not play an important role in exocytosis.

  4. 4.

    Ca2+ entry into the cells is associated with activation of phospholiphase C and a rapid translocation of protein kinase C to membranes.

  5. 5.

    The plasma membrane of chromaffin cells was rendered permeable to Ca2+, ATP, and proteins by the detergent digitonin without disruption of the intracellular secretory granules. In this system in which the intracellular milieu can be controlled, micromolar Ca2+ directly stimulated catecholamine secretion.

  6. 6.

    Treatment of the cells with phorbol esters and diglyceride, which activate protein kinase C, enhanced phosphorylation and subsequent Ca2+-dependent secretion in digitonin-treated cells.

  7. 7.

    Phorbol ester-induced secretion could be specifically inhibited by trypsin. The experiments indicate that protein kinase C modulates but is not necessary for Ca2+-dependent secretion.


Key words

exocytosis catecholamine adrenal chromaffin cell Ca2+ protein kinase digitonin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Casey, R. P., Njus, D., Radda, G. K., and Sehr, P. a. (1977). Active proton uptake by chromaffin granules: Observation by amine distribution and phosphorus-21 nuclear magnetic resonance techniques.Biochemistry 16972–977.Google Scholar
  2. Castagna, M., Takai, Y., Kaibuchi, K., Sano, K., Kikkawa, U., and Nishizuka, Y. (1982). Direct activation of calcium-activated phospholipid-dependent protein kinase by tumor-promoting phorbol esters.J. Biol. Chem. 2577847–7851.Google Scholar
  3. Douglas, W. W. (1975). Secretomotor control on adrenal medullary secretion: Synaptic, membrane and ionic events in stimulus-secretion coupling, InHandbook of Physiology Endocrinology (Blashko, H., Sayer, G., and Smith, A. D., Eds.), American Physiological Society, Washington, D.C., Sect. 7, Vol. 6, pp. 367–388.Google Scholar
  4. Dunn, L. A., and Holz, R. W. (1983). Catecholamine secretion from digitonin-treated adrenalmedullary chromaffin cells.J. Biol. Chem. 2584989–4993.Google Scholar
  5. Eberhard, D. A., and Holz, R. W. (1987). Cholinergic stimulation of inositol phosphate formation in bovine adrenal chromaffin cells: Distinct nicotonic and muscarinic mechanisms.J. Neurochem. 491634–1643.Google Scholar
  6. Holz, R. W. (1978). Evidence that catecholamine transport into chromaffin vesicles is coupled to vesicle membrane potential.Proc. Natl. Acad. Sci. USA 755190–5194.Google Scholar
  7. Holz, R. W., and Senter, R. A. (1985). Plasma membrane and chromaffin granule characteristics in digitonin-treated chromaffin cells.J. Neurochem. 451548–1557.Google Scholar
  8. Holtz, R. W., and Senter, R. A. (1988). Effects of trypsin on secretion stimulated by micromolar Ca2+ and phorbol ester in digitonin permeabilized adrenal chromaffin cells.Cell. Mol. Neurobiol. 8115–128.Google Scholar
  9. Holz, R. W., Senter, R. A., and Frye, R. A. (1982). Relationship between Ca++ uptake and catecholamine secretion in primary dissociated cultures of adrenal medulla.J. Neurochem. 39635–646.Google Scholar
  10. Holz, R. W., Senter, R. A., and Sharp, R. R. (1983). Evidence that the H+ electrochemical gradient across membranes of chromaffin granules is not involved in exocytosis.J. Biol. Chem. 2587506–7513.Google Scholar
  11. Johnson, R. G., and Scarpa, A. (1976). Internal pH of isolated chromaffin vesicles.J. Biol. Chem. 2512189–2191.Google Scholar
  12. Johnson, R. G., and Scarpa, A. (1979). Protonmotive force and catecholamine transport in isolated chromaffin granules.J. Biol. Chem. 2543750–3760.Google Scholar
  13. Kikkawa, U., Takai, Y., Minakuchi, R., Inohara, S., and Nishizuka, Y. (1982). Calcium-activated, phospholipid-dependent protein kinase from rat brain.J. Biol. Chem. 25713341–13348.Google Scholar
  14. Kilpatrick, D. L., Slepetis, R. J., Corcoran, J. J., and Kirshner, N. (1982). Calcium uptake and catecholamine secretion by cultured bovine adrenal medulla cells.J. Neurochem. 38427–435.Google Scholar
  15. Kishimoto, A., Takai, Y., Mori, T., Kikkawa, U., and Nishizuka, Y. (1980). Calcium and phospholipid-dependent protein kinase C activation by diacylglycerol, its possible relations to phosphatidylinositol turnover.J. Biol. Chem. 2552273–2276.Google Scholar
  16. Knight, D. E., and Baker, P. F. (1982). Calcium dependence of catecholamine release from bovine adrenal medullary cells after exposure to intense electric fields.J. Membr. biol. 68107–140.Google Scholar
  17. Knight, D. E., and Baker, P. F. (1983). The phorbol ester TPA increases the affinity of exocytosis for calcium in “leaky” adrenal medullary cells.FEBS Lett. 16098–100.Google Scholar
  18. Lee, S. A., and Holz, R. W. (1986). Protein phosphorylation and secretion in digitonin-permeabilized adrenal chromaffin cells: Effects of micromolar Ca2+, phorbol esters and diacylglycerol.J. Biol. Chem. 26117089–17098.Google Scholar
  19. Njus, E., Kelly, P. M., and Harnadek, G. J. (1986). Bioenergetics of secretory vesicles.Biochim. Biophys. Acta 853237–265.Google Scholar
  20. Pocotte, S. L., Frye, R. A., Senter, R. A., TerBush, D. R., Lee, S. A., and Holz, R. W. (1985). Effects of phorbol ester on catecholamine secretion and protein phsophorylation in adrenal medullary cell cultures.Proc. Natl. Acad. Sci. USA 82930–934.Google Scholar
  21. Portzehl, H., Caldwell, P. C., and Ruegg, J. C. (1964). The dependence of contraction and relaxation of muscle fibers from the Crab Maia squinado on the internal concentration of free calcium ions.Biochim. Biophys. Acta 79581–591.Google Scholar
  22. TerBush, D. R., and Holz, R. W. (1986). Effects of phorbol esters, diacylclycerol and cholinergic agonists on the subcellular distribution of protein kinase C in intact or digitonin-permeabilized adrenal chromaffin cells.J. Biol. Chem. 26117099–17106.Google Scholar
  23. Viveros, O. H. (1975). Mechanism of secretion of catecholamines from adrenal medulla, InHandbook of Physiology Endocrinology (Blashko, H., Sayer, G., and Smith, A. D., Eds.). American Physiological Society, Washington, D.C. Sect. 7, Vol. 6, pp. 389–426.Google Scholar
  24. Wilson, S. P., and Kirshner, N. (1983). Calcium-evoked secretion from digitonin-permeabilized adrenal medullary chromaffin cells.J. Biol. Chem. 2584994–5000.Google Scholar
  25. Wise, B. C., Raynor, R. L., and Kuo, J. F. (1982). Phospholipid-sensitive Ca++-dependent protein kinase from heart.J. Biol. Chem. 2578481–8488.Google Scholar
  26. Yamanishi, J., Takai, Y., Kaibuchi, K., Sano, K., Castagna, M., and Nishizuka, Y. (1983). Synergistic functions of phorbol ester and calcium in serotonin release from human platelets.Biochem. Biophys. Res. Commun. 112778–786.Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • Ronald W. Holz
    • 1
  1. 1.Department of PharmacologyUniversity of MichiganAnn ArborUSA

Personalised recommendations