Chromosome Research

, Volume 3, Issue 2, pp 101–108 | Cite as

Chromosome identification and mapping in the grassZingeria biebersteiniana (2n=4) using fluorochromes

  • S. T. Bennett
  • I. J. Leitch
  • M. D. Bennett


The grassZingeria biebersteiniana is one of five angiosperms known with 2n=2x=4. Its chromosomes were studied using fluorochrome banding and fluorescencein situ hybridization (FISH). The large pericentromeric region fluoresced much more brightly on chromosome 2 than on chromosome 1, using two different fluorochrome banding methods. These offer rapid and reliable means for identifying chromosomes and work throughout mitosis. FISH located the major site of 18S–26S rDNA sequences at the secondary constriction, which is proximal to two minor sites, all on the short arm of chromosome 1. Two 5S sites were also detected, the most distinct on the short arm of chromosome 2 and the other apparently co-localized with part of the major 18S–26S rDNA cluster on chromosome 1. These results constitute the first steps in constructing a physical gene map forZ. biebersteiniana. Such information may facilitate future studies of the organization and reorganization of grass genomes, including research into the spatial arrangement of the genome inZingeria nuclei and much wider comparisons of synteny and genome evolution in grasses.

Key words

FISH fluorochrome banding low chromosome number ribosomal RNA genes Zingeria biebersteiniana (2n=4) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Appels R, Honeycutt RL (1986) rDNA: evolution over a billion years. In: Dutta SK, ed.DNA Systematics. Vol. 2,Plants. Boca Raton: CRC Press, pp 81–135.Google Scholar
  2. Appels R. Gerlach WL, Dennis ES, Swift H, Peacock WJ (1980) Molecular and chromosomal organization of DNA sequences coding for the ribosomal RNAs in cereals.Chromosoma 78: 293–311.Google Scholar
  3. Arrighi FE, Hsu TC (1971) Localization of heterochromatin in human chromosomes.Cytogenetics 10: 81–86.Google Scholar
  4. Bennett MD, Smith JB, Seal AG (1986) The karyotype of the grassZingeria biebersteiniana (2n = 4) by light and electron microscopy.Can J Genet Cytol 28: 554–562.Google Scholar
  5. Bennett ST, Kenton AY, Bennett MD (1992) Genomicin situ hybridization reveals the allopolyploid nature ofMilium montianum (Gramineae).Chromosoma 101: 420–424.Google Scholar
  6. Cox AV, Bennett MD, Dyer TA (1992) Use of the polymerase chain reaction to detect spacer size heterogeneity in plant 5S-rRNA gene clusters and to locate such clusters in wheat (Triticum aestivum L.).Theor Appl Genet 83: 684–690.Google Scholar
  7. Devos KM, Atkinson MD, Chinoy CNet al. (1993) Chromosomal rearrangements in the rye genome relative to wheat.Theor Appl Genet 85: 673–680.Google Scholar
  8. Dvorák J, Zhang H-B, Kota RS, Lassner M (1989) Organization and evolution of the 5S ribosomal RNA gene family in wheat and related species.Genome 32: 1003–1016.Google Scholar
  9. Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley.Nucleic Acids Res 7: 1869–1885.Google Scholar
  10. Gerlach WL, Dyer TA (1980) Sequence organization of the repeating units in the nucleus of wheat which contain 5S rRNA genes.Nucleic Acids Res 8: 4851–4865.Google Scholar
  11. Ikeda H (1987) Cytogenetic studies on the chromosome complements ofHaplopappus gracilis (2n = 4) andH. ravenii (2n = 8).J Sci Hiroshima Univ, Ser B, Div 2 21: 67–104.Google Scholar
  12. Imai HT, Taylor RW (1989) Chromosomal polymorphisms involving telomere fusion, centromeric inactivation and centromere shift in the antMyrmecia (pilosula) (n = 1).Chromosoma 98: 456–460.Google Scholar
  13. Jackson RC (1973) Chromosomal evolution inHaplopappus gracilis: a centric transposition race.Evolution 27: 243–256.Google Scholar
  14. Jones GH (1978) Giemsa C-banding of rye meiotic chromosomes and the nature of ‘terminal’ chiasmata.Chromosoma 66: 45–57.Google Scholar
  15. Kenton A (1991) Heterochromatin accumulation, disposition and diversity inGibasis karwinskyana (Commelinaceae).Chromosoma 100: 467–478.Google Scholar
  16. Leitch IJ, Heslop-Harrison JS (1992) Physical mapping of the 18S-5.8S-26S rRNA genes in barley byin situ hybridization.Genome 35: 1013–1018.Google Scholar
  17. Leitch IJ, Heslop-Harrison JS (1993) Physical mapping of four sites of 5S rDNA sequences and one site of the α-amylase-2 gene in barley (Hordeum vulgare).Genome 36: 517–523.Google Scholar
  18. Leitch AR, Schwarzacher T, Jackson D, Leitch IJ (1994)In situ hybridization: A practical guide. Royal Microscopical Society, Microscopy Handbooks Vol. 27. Oxford: Bios Ltd.Google Scholar
  19. Lima-de-Faria A (1954) Chromosome gradient and chromosome field inAgapanthus.Chromosoma 6: 330–370.Google Scholar
  20. Maeda N, Smithies O (1986) The evolution of multigene families: human haptoglobin genes.Annu Rev Genet 20: 81–108.Google Scholar
  21. Moore G, Gale MD, Kurata N, Flavell RB (1993) Molecular analysis of small grain cereal genomes: current status and prospects.Bio/Technology 11: 584–589.Google Scholar
  22. Mukai Y, Endo TR, Gill BS (1990) Physical mapping of the 5S rRNA multigene family in common wheat.J Hered 81: 290–295.Google Scholar
  23. Mukai Y, Endo TR, Gill BS (1991) Physical mapping of the 18S.26S rRNA multigene family in common wheat: Identification of a new locus.Chromosoma 100: 71–78.Google Scholar
  24. Schweizer D (1976) Reverse fluorescent chromosome banding with chromomycin and DAPI.Chromosoma 58: 307–324.Google Scholar
  25. Semyonov VI, Semyonova EV (1975) Differential staining of chromosomes ofZingeria biebersteiniana (Claus.) P. Smirn. in mitosis and meiosis (in Russian)Proc Acad Sci Siberia SSSR Biol Sci Ser 3: 80–84.Google Scholar
  26. Stedje B (1988) A new low chromosome number forOrnithogalum tenuifolium (Hyacinthaceae).Pl Sys Evol 161: 65–69.Google Scholar
  27. Stuczynski M (1978)Zingeria beibersteiniana (Claus.) P. Smirn. - gatunek o najmniejszej liczbie chromosomów w rodziniePoaceae.Biuletyn Instytutu Hodowli I Aklimatyzacji Roslin 134: 259–262 (in Polish).Google Scholar
  28. Tsvelev NN, Zhukova PG (1974) On the minimal main chromosome number in the family Poaceae.Bot Z 59: 265–269.Google Scholar
  29. Tutin TG, Heywood VH, Burgess NAet al. (1980)Flora Europaea 5. Cambridge: Cambridge University Press, p 246.Google Scholar
  30. Vosa CG (1976) Heterochromatin classification inVicia faba andScilla sibirica. In: Pearson PL, Lewis KR, eds.Chromosomes Today, Vol 5. New York: John Wiley & Sons, p 185–192.Google Scholar
  31. Watanabe K, Carter CR, Smith-White S (1975) The cytology ofBrachycome lineariloba. 5. Chromosome relationships and phylogeny of the Race A cytodemes (n = 2).Chromosoma 52: 383–397.Google Scholar
  32. Watanabe K, Smith-White S (1987) Phyletic and evolutionary relationships ofBrachyscome lineariloba (Compositae).Pl Syst Evol 157: 121–141.Google Scholar
  33. Whitkus R, Doebley J, Lee M (1992) Comparative genome mapping of sorghum and maize.Genetics 132: 1119–1130.Google Scholar
  34. Yonezawa Y (1981) Cytological and cytogenetic studies on the transposition of centromere and the karyotype differentiation inHaplopappus gracilis.Cytologia 46: 431–441.Google Scholar

Copyright information

© Rapid Communications of Oxford Ltd 1995

Authors and Affiliations

  • S. T. Bennett
    • 1
  • I. J. Leitch
    • 2
  • M. D. Bennett
    • 2
  1. 1.the Nuffield Department of Surgery, John Radcliffe Hospital and Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUK
  2. 2.the Jodrell LaboratoryRoyal Botanic GardensKew, RichmondUK

Personalised recommendations