Advertisement

The host-guest chemistry of resorcinarenes

  • H. -J. Schneider
  • U. Schneider
Review Articles

Abstract

Conformations, acid-base and supramolecular properties of phenolic metacyclophanes obtained from the condensation of resorcinol with aldehydes are discussed, including the mechanisms involved in the formation of these macrocycles. The strong binding of choline-type compounds and the inhibition of acetylcholine hydrolysis with therccc stereoisomers is mechanistically evaluated; arctt isomer shows strong conformational coupling for, e.g., choline binding and simultaneous proton release. The presence of larger alkyl residues at the bottom of therccc macrocycle leads to an additional binding site for small lipophilic substrates, which is independent of the upper complexation center for positively charged substrates. Substitution at the upper rim by carboxylic groups at the 2-position of the phenyl rings yields receptors for, e.g., α, ω-diammonium ions with alternate equatorial and axial arylunits. Positively charged substituents at the upper rim, introduced by aminoalkylation, lead to little change of complexation as a result from their orientation away from the binding center. Aminoacid substituents, for the same reason, do not lead to enantioselective complexation, but allow particularly for strong binding of transition metal ions. Preliminary studies show that resorcinarenes bearing a wide array of positive charges are potent groove binders to ds-DNA without intercalative contributions.

Key words

Acidities amino acids binding mechanisms calixarenes choline conformations copper complexes NMR polyphenolates resorcinarenes supramolecular complexes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Supramolecular Chemistry, Part53; part52: T. Ikeda, K. Yoshida, H.-J. Schneider:J. Am. Chem. Soc., in print.Google Scholar
  2. 2.
    A. v. Baeyer:Ber. Dtsch. Chem. Ges. 5, 280, 1094 (1872).Google Scholar
  3. 3.(a)
    A. Michael:Ber. Dtsch. Chem. Ges. 17 (Vol. 3), 20 (1884)Google Scholar
  4. 3.(b)
    A. Michael and J.P. Ryder:ibid. 19, 1388 (1886)Google Scholar
  5. 3.(c)
    R. Möhlau and R. Koch:ibid. 27, 2887 (1894)Google Scholar
  6. 3.(d)
    C. Liebermann and S. Lindenbaum:ibid. 37, 1171 (1904).Google Scholar
  7. 4.
    J.B. Niederl and H.J. Vogel:J. Am. Chem. Soc. 62, 2512 (1940).Google Scholar
  8. 5.
    H. Erdtman, S. Högberg, S. Abrahamsson and B. Nilsson:Tetrahedron Lett. 1679 (1968); B. Nilsson:Acta Chem. Scand. 22, 732 (1968).Google Scholar
  9. 6.(a)
    A.G.S. Högberg:J. Am. Chem. Soc. 102, 6046 (1980)Google Scholar
  10. 6.(b)
    —:J. Org. Chem. 45, 4498 (1980).Google Scholar
  11. 7.
    G. Mann, F. Weinelt, and S. Hauptmann:J. Phys. Org. Chem. 2, 531 (1989); for stereoisomers of condensation products from long chain alkanals, see: L. Abis, E. Dalcanale, A. DuVosel, S. Spera:J. Org. Chem. 53, 5475 (1988).Google Scholar
  12. 8.(a)
    F. Diederich:Cyclophanes (Monographs in Supramolecular Chemistry) J.F. Stoddart (Ed.) (1991), Royal Soc. Chem., Cambridge;Google Scholar
  13. 8.(b)
    F. Vögtle:Cyclophan-Chemie, Teubner, Stuttgart (1990).Google Scholar
  14. 9.
    D.J. Cram:Angew. Chem. 100, 1041 (1988);Angew. Chem., Int. Ed. Engl. 27, 1009 (1988); D.J. Cram, M.T. Blanda, K. Paek and C.B. Knobler:J. Am. Chem. Soc. 114, 1765 (1992), and references cited therein.Google Scholar
  15. 10.(a)
    For related substitution reactions at the phenolic groups, see P. Soncini, S. Bonsignore, E. Dalcanale, and F. Ugozzoli:J. Org. Chem. 57, 4608 (1992)Google Scholar
  16. 10.(b)
    T.N. Sorrell and J.L. Richards:Synlett. 155 (1992)Google Scholar
  17. 10.(c)
    P. Timmerman, M.G.A. van Mook, W. Verboom, G.J. van Hummel, S. Harkema, and D.N. Reinhoudt:Tetrahedron Lett. 3377 (1992); other resorcinol-based hostsGoogle Scholar
  18. 10.(d)
    O. Manabe, K. Asakura, T. Nishi, and S. Shinkai:Chem. Lett. 1219 (1990)Google Scholar
  19. 10.(e)
    E. Weber, H.J. Koehler, K. Panneerselvam, and K. K. Chacko:J. Chem. Soc., Perkin Trans. 2, 1599 (1990)Google Scholar
  20. 10.(f)
    E. Chapoteau, B.P. Czech, A. Kumar, A. Pose, R.A. Bartsch, R.A. Holwerda, N.K. Dalley, B.E. Wilson, and W. Jiang:J. Org. Chem. 54, 861 (1989).Google Scholar
  21. 11.(a)
    Y. Aoyama:Adv. Supramol. Chem. 2, 65 (1992)Google Scholar
  22. 11.(b)
    K. Kobayashi, Y. Asakawa, Y. Kikuchi, H. Toi and Y. Aoyama:J. Am. Chem. Soc. 115, 2648 (1993), and references cited therein.Google Scholar
  23. 12.
    P.D. Beer and E.L. Tite:J. Chem. Soc., Dalton Trans. 2543 (1990).Google Scholar
  24. 13.
    G. Cometti, E. Dalcanale, A. DuVosel and A. M. Levelut:Liquid Crystals 11, 93 (1992), and earlier references.Google Scholar
  25. 14.
    H. J. Schneider, D. Güttes and U. Schneider:Angew. Chem. 98, 635 (1986),Angew. Chem. Int. Ed. Engl. 25, 647 (1986).Google Scholar
  26. 15.(a)
    H. J. Schneider:Angew. Chem. 103, 1419 (1991);Angew. Chem., Int. Ed. Engl. 30, 1417 (1991)Google Scholar
  27. 15.(b)
    H. J. Schneider, T. Blatter, U. Cuber, R. Juneja, T. Schiestel, U. Schneider, and P. Zimmermann in:Frontiers in Supramolecular Chemistry and Photochemistry, H. J. Schneider and H. Dürr, Eds; VCH, Weinheim, pp. 29–56 (1991)Google Scholar
  28. 15.(c)
    H. J. Schneider:Rec. Trav. Chim. Pays-Bas 112, 412 (1993).Google Scholar
  29. 16.
    German Patent DD 290 412 (29.5.1991); DDP 287, 158 (21.1.1991).Google Scholar
  30. 17.
    F. Weinelt and H. J. Schneider:J. Org. Chem. 56, 5527 (1991).Google Scholar
  31. 18.
    H. J. Schneider, D. Güttes, U. Schneider:J. Am. Chem. Soc. 110, 6449–6454 (1988).Google Scholar
  32. 19.(a)
    For other potent choline receptors see D.A. Dougherty and D. A. Stauffer:Science (Washington) 250, 1558 (1990)Google Scholar
  33. 19.(b)
    R. Meric, J. P. Vigneron, and J. M. Lehn:J. Chem. Soc., Chem. Commun., 129 (1993); and references cited therein.Google Scholar
  34. 19.(c)
    For the natural receptor, see F.B. Hasan, S.G. Cohen, and J.B. Cohen:Biol. Chem. 255, 3898 (1980).Google Scholar
  35. 20.(a)
    H. J. Schneider and I. Theis:Angew. Chem. 101, 757 (1989)Angew. Chem., Int. Ed. Engl. 28, 753 (1989)Google Scholar
  36. 20.(b)
    H. J. Schneider, T. Schiestel, and P. Zimmermann:J. Am. Chem. Soc. 114, 7698 (1992).Google Scholar
  37. 21.
    H. J. Schneider, R. Kramer, S. Simova and U. Schneider:J. Am. Chem. Soc. 110, 6442 (1988); see also H. J. Schneider and I. Theis:J. Org. Chem. 57, 3066 (1992).Google Scholar
  38. 22.(a)
    U. Schneider: Dissertation, Universität des Saarlandes 1992Google Scholar
  39. 22.(b)
    U. Schneider and H. J. Schneider: unpublished results;Chem. Ber. 127, 2455 (1994).Google Scholar
  40. 23.
    H. J. Schneider and U. Schneider:J. Org. Chem. 52, 1613 (1987).Google Scholar
  41. 24.
    J.A. Tucker, C.B. Knobler, K.N. Trueblood and D.J. Cram:J. Am. Chem. Soc. 111, 3688 (1989).Google Scholar
  42. 25.
    See e.g., C.D. Gutsche and K.C. Nam:J. Am. Chem. Soc. 110, 6153 (1988).Google Scholar
  43. 26.
    O. Manabe, K. Asakura, T. Nishi, and S. Shinkai:Chem. Lett. 1219 (1990); and earlier references.Google Scholar
  44. 27.
    A.E. Martell and R.M. Smith:Critical Stability Constants, Vol. 3, Plenum Press, New York (1974).Google Scholar
  45. 28.
    B. Palm: Diplomarbeit, Universität des Saarlandes (1993).Google Scholar
  46. 29.
    H. J. Schneider and T. Blatter:Angew. Chem. 104, 1244 (1992);Angew. Chem., Int. Ed. Engl. 31, 1207 (1992).Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • H. -J. Schneider
    • 1
  • U. Schneider
    • 1
  1. 1.FR Organische Chemie der Universität des SaarlandesSaarbrückenGermany

Personalised recommendations