Agroforestry Systems

, Volume 30, Issue 1–2, pp 175–197 | Cite as

A model simulating above- and below-ground tree architecture with agroforestry applications

  • P. De Reffye
  • F. Houllier
  • F. Blaise
  • D. Barthelemy
  • J. Dauzat
  • D. Auclair


Modelling plant growth and architecture requires two consecutive and complementary approaches. The first is a qualitative botanical analysis, in which the development sequence of a tree is studied by the identification of various levels of organisation and of homogeneous subunits. All of these — architectural unit, axis, growth unit — follow particular growth processes which can be described by using the second approach, the quantitative analysis. Modelling of the functioning of meristems based upon stochastic processes has been carried out since 1980, in combination with a large amount of experimental work on temperate and tropical plants. Calculations involved in tree simulations from field data are based upon the probabilistic Monte Carlo method for the topological part and on analytical geometry for the morphological part. Computer graphics methods are then used to visualise the computed plant. Several sectors in agroforestry are concerned with application of such plant architecture modelling: tree growth and yield, radiative transfers, timber quality and mechanics, simulation of competition, interaction between plant morphology and physiology.

Key words

plant architecture plant growth plant modelling stochastic processes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atger C (1992) Essai sur l'architecture racinaire des arbres. Thesis, Université de Montpellier, FranceGoogle Scholar
  2. Atger C and Edelin C (1994) Premières données sur l'architecture comparée des systèmes racinaires et caulinaires. Can J Bot 72: 963–975Google Scholar
  3. Auclair D (1995) Scientific and technical basis for sylvopastoral systems in Europe. In: CIHEAM (ed) Sylvopastoral Systems — Environmental, Agricultural and Economic Sustainability. Proceedings of the 8th Meeting of the FAO Working Group on Mediterranean Pastures and Fodder Crops, 29 May–2 June 1995, Avignon, FranceGoogle Scholar
  4. Barczi JF, De Reffye P and Caraglio Y (1995) Essai sur l'identification et la mise en oeuvre des paramètres nécessaires à la simulation d'une architecture végétale. Science Update. INRA, Versailles, France (in press)Google Scholar
  5. Barthélémy D, Edelin C and Hallé F (1989) Architectural concepts for tropical trees. In: Holm-Nielsen LB, Nielsen I and Balsler H (eds) Tropical Forests: Botanical Dynamics, Speciation and Diversity, pp 98–100. Academic Press, London, UKGoogle Scholar
  6. Barthélémy D, Edelin C and Hallé F (1991) Canopy architecture. In: Raghavendra AS (ed) Physiology of Trees, pp 1–20. John Wiley & Sons, Chichester, UKGoogle Scholar
  7. Barthélémy D, Caraglio Y and Costes E (1995) Architecture, gradients morphologiques et âge physiologique, Science Update. INRA, Versailles, France (in press)Google Scholar
  8. Blaise F (1991) Simulation du parallélisme dans la croissance des plantes et applications. Thesis, Université Louis Pasteur, Strasbourg, FranceGoogle Scholar
  9. Blaise F and De Reffye P (1994) Simulation de la croissance des arbres et influence du milieu: le logiciel AMAPpara. In: Tankoano J (ed) Proceedings of the 2nd African Conference on Research in Computer Science (CARI'94), 12–18 October 1994, pp 61–75. Burkina Faso, INRIA, ORSTOM, Ouagadougou, Upper VoltaGoogle Scholar
  10. Blaise F, Barczi JF, Jaeger M, Dinouard P and De Reffye P (1995) Simulation of the growth of plants — modelling of metamorphosis and spatial interactions in the architecture and development of plants. In: Kunii TL and Luciani L (eds) Synthetic Worlds. John Wiley & Sons, Chichester, UK (in press)Google Scholar
  11. Caraglio Y and Barthélémy D (1995) Caractéristiques morphologiques de la croissance et de la ramification des végétaux. Définition, description, écueils terminologiques. Science Update. INRA, Versailles, France (in press)Google Scholar
  12. Cox DR (1962) Renewal Theory. Chapman and Hall, London, UKGoogle Scholar
  13. Dauzat J (1994) Radiative transfer simulation on computer models ofElaeis guineensis. Oléagineux 49(3): 8–90Google Scholar
  14. Dauzat D and Hautecoeur O (1991) Simulation des transferts radiatifs sur maquettes informatiques de couverts végétaux. In: Hunt JJ (ed) Physical Measurements and Signatures in Remote Sensing, 14–18 January 1991, pp 415–418. European Space Agency (ESA), Courchevel, FranceGoogle Scholar
  15. De Reffye P (1979) Modélisation de l'Architecture des Arbres par des Processus Stochastiques. Simulation Spatiale des Modèles Tropicaux sous l'Effet de la Pesanteur. Application auCoffea robusta. Thesis, Université de Paris-Sud Orsay, Paris, FranceGoogle Scholar
  16. De Reffye P, Blaise F and Guédon Y (1993) Modélisation et simulation de l'architecture et de la croissance des plantes. Rev Palais de la Découverte 209: 23–48Google Scholar
  17. De Reffye P, Dinouard P and Barthélémy D (1991a) Modélisation et simulation de l'architecture de l'orme du JaponZelkova serrata (Thunb.) Makino (Ulmaceae): la notion d'axe de référence. In: Edelin C (ed) 2ème Colloque International sur l'Arbre, 10–15 September 1990, pp 251–266. Naturalia Monspeliensia, N° hors série A7, Montpellier, FranceGoogle Scholar
  18. De Reffye P, Elguero E and Costes E (1991b) Growth units construction in trees: a stochastic approach. Acta Biotheor 39: 325–342CrossRefGoogle Scholar
  19. De Reffye P, Houllier F, Blaise F and Fourcaud T (1995) Essai sur les relations entre architecture d'un arbre et la grosseur de ses axes végétatifs. Science Update. INRA, Versailles, France (in press)Google Scholar
  20. Edelin C (1977) Images de l'Architecture des Conifères. Thesis, Université de Montpellier, Montpellier, FranceGoogle Scholar
  21. Edelin C (1984) L'Architecture Monopodiale: l'Exemple de Quelques Arbres d'Asie Tropicale. Thesis, Université de Montpellier, Montpellier, FranceGoogle Scholar
  22. Feller W (1957) An Introduction to Probability Theory and its Applications. John Wiley & Sons, New York, NY, USAGoogle Scholar
  23. Fourcaud T (1995) Analyse du comportement mécanique d'une plante en croissance par la méthode des éléments finis. Thesis, Université de Bordeaux, Bordeaux, FranceGoogle Scholar
  24. Fourcaud T and Lac P (1993) Modélisation mécanique de la croissance des végétaux. In: Colloque National en Calcul des Structures, 11–14 May 1993, pp. 131–148. INRIA, Giens, FranceGoogle Scholar
  25. Françon J (1991) Sur la modélisation informatique de l'architecture et du développement des végétaux. In: Edelin C (ed) 2ème Colloque International sur l'Arbre, 10–15 September 1990, pp 231–247. Naturalia Monspeliensia, N° hors série A7, Montpellier, FranceGoogle Scholar
  26. Françon J and Lienhardt P (1994) Basic principles of topology-based methods for simulating metamorphoses of natural objects. In: Magnenat Thalmann N and Thalmann D (eds) Artificial Life and Virtual Reality, pp 23–44. John Wiley and Sons, Chichester, UKGoogle Scholar
  27. Guédon Y (1995) Modélisation de séquences d'événements décrivant la mise en place d'éléments botaniques. Science Update. INRA, Versailles, France (in press)Google Scholar
  28. Guédon Y and Costes E (1995) Modélisation de la croissance d'un axe végétatif. Science Update. INRA, Versailles, France (in press)Google Scholar
  29. Hallé F and Oldeman RAA (1970) Essai sur l'architecture et la dynamique de croissance des arbres tropicaux. Masson & Cie, Paris, FranceGoogle Scholar
  30. Hallé F, Oldeman RAA and Tomlinson PB (1978) Tropical Trees and Forests — An Architectural Analysis. Springer Verlag, Berlin, GermanyGoogle Scholar
  31. Jaeger M and De Reffye P (1992) Basic concepts of computer simulation of plant growth. J Biosci 17: 275–291Google Scholar
  32. Jourdan C (1995) Modélisation de l'architecture du système racinaire du palmier à huile. Thesis, Université de Montpellier, Montpellier, FranceGoogle Scholar
  33. Jourdan C, Rey H and Guédon Y (1995) Architectural analysis and modelling of the branching process of the young oil palm root system. Plant and Soil (submitted)Google Scholar
  34. Kurth W (1994) Morphological models of plant growth: Possibilities and ecological relevance. Ecological Modelling 75/76: 299–308CrossRefGoogle Scholar
  35. Nair PKR (1991) State of the art of agroforestry systems. In: Jarvis PG (ed) Agroforestry: Principles and Practice, pp 5–29. Elsevier, Amsterdam, The NetherlandsGoogle Scholar
  36. Prusinkiewicz P, Lindenmayer A and Hanan J (1988) Developmental models of herbaceous plants for computer imagery purposes. Computer Graphics 22: 141–150Google Scholar
  37. Rennolls K (1994) Pipe-model theory of stem profile development. For Ecol Manage 69: 41–55CrossRefGoogle Scholar
  38. Shinozaki K, Yoda K, Hozumi K and Kira T (1964) A quantitative analysis of plant form — the pipe model theory. I. Basic analysis. Jpn J Ecol 14: 97–105Google Scholar
  39. Sibbald AR, Griffiths JH and Elston DA (1994) Herbage yield in agroforestry systems as a function of easily measured attributes of the tree canopy. For Ecol Manage 65: 195–200CrossRefGoogle Scholar
  40. Sibbald AR and Sinclair FL (1990) A review of agroforestry research in progress in the UK. Agroforestry Abstracts 3: 149–164Google Scholar
  41. White J (1979) The plant as a metapopulation. Ann Rev Ecol Syst 10: 109–145CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • P. De Reffye
    • 1
  • F. Houllier
    • 2
  • F. Blaise
    • 1
  • D. Barthelemy
    • 1
  • J. Dauzat
    • 1
  • D. Auclair
    • 1
  1. 1.Unité de Modélisation des PlantesCIRAD/GERDAT (Centre de Coopération Internationale en Recherche Agronomique pour le Développement)Montpellier cedex 1France
  2. 2.ENGREFNancyFrance

Personalised recommendations