Foundations of Physics

, Volume 5, Issue 3, pp 525–542 | Cite as

Consequences of the inertial equivalence of energy

  • William C. Davidon
Article

Abstract

The usual macroscopic theory of relativistic mechanics and electromagnetism is formulated so that all assumptions but one are consistent with both special relativity and Newtonian mechanics, the distinguishing assumption being that to any energyE, whatever its form, there corresponds an inertial massE/c2. The speed of light enters this formulation only as a consequence of the inertial equivalent of energy1/c2. While, for1/c2>0 the resulting theory has symmetry under the Poincaré group, including Lorentz transformations, all its physical consequences can be derived and tested in any one inertial frame. In particular, an account is given in one inertial frame for the dynamic causes of relativistic effects for simple accelerated clocks and roads.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Physics Today 27 (January), 112 (1974).Google Scholar
  2. 2.
    J. C. Maxwell,Treatise on Electricity and Magnetism (Clarendon Press, Oxford, 1873), Vol. 2, p. 391.Google Scholar
  3. 3.
    P. Lebedeff,Archives des Sciences Phys. et Nat. 8, 184 (1899).Google Scholar
  4. 4.
    J. J. Thompson,Phil. Mag. 11, 229 (1881).Google Scholar
  5. 5.
    O. Heaviside,Phil. Mag. 27, 324 (1889).Google Scholar
  6. 6.
    E. Fermi,Lincei Rend. 31, 184, 306 (1922).Google Scholar
  7. 7.
    H. Poincaré,Arch. Néerland Sci. 2, 232 (1900).Google Scholar
  8. 8.
    A. Einstein,Ann. Physik 18, 639 (1905).Google Scholar
  9. 9.
    H. E. Ives,J. Opt. Soc. Am. 42, 540 (1952).Google Scholar
  10. 10.
    W. Kaufmann,Nachr. Akad. Wiss., Göttingen, II Math. Phys. Kl.1901, 143.Google Scholar
  11. 11.
    G. N. Lewis,Phil. Mag. 16, 705 (1908).Google Scholar
  12. 12.
    M. Planck,Verhandl. Deut. Physik. Ges. 10, 728 (1908).Google Scholar
  13. 13.
    H. A. Lorentz,Versl. Gewone Vergad. Akad. Amst. 20, 87 (1911).Google Scholar
  14. 14.
    E. Inönü and E. P. Wigner,Proc. Nat. Acad. Sci., U.S. 39, 510 (1953).Google Scholar
  15. 15.
    P. Havas,Rev. Mod. Phys. 36, 938 (1964).Google Scholar
  16. 16.
    E. P. Wigner,Symmetries and Reflections (Indiana Univ. Press, Bloomington, 1967), p. 16.Google Scholar
  17. 17.
    L. Jánossy,Usp. Fiz. Nauk 62, 149 (1957).Google Scholar
  18. 18.
    M. Le Bellac and J.-M. Lévy-Leblond,Nuovo Cimento 14B, 217 (1973).Google Scholar

Copyright information

© Plenum Publishing Corporation 1975

Authors and Affiliations

  • William C. Davidon
    • 1
  1. 1.Haverford CollegeHaverford

Personalised recommendations