Journal of Computer-Aided Materials Design

, Volume 1, Issue 2, pp 111–148 | Cite as

Tailored elastic behavior of multilayers through controlled interface structure

  • D. Wolf
  • J. A. Jaszczak
Perspective

Summary

Atomistic simulations are reviewed that elucidate the causes of the anomalous elastic behavior of thin films and composition-modulated superlattice materials. The investigation of free-standing thin films and of superlattices, composed of grain boundaries, shows that the elastic anomalies are not an electronic but a structural interface effect that is intricately connected with the local atomic disorder at the interfaces. The consequent predictions that (i)coherent strained-layer superlattices should show the smallest elastic anomalies and (ii) making the interfaces incoherent should enhance all anomalies, are validated by simulations of dissimilar-material superlattices. Such simulations can be an effective aid in tailoring the elastic behavior of composite materials because, in contrast with experiments, they allow one to systematically investigate simple, but well-characterized model systems with increasing complexity. This unique capability of simulations has enabled us to elucidate the underlying driving forces and, in particular, (i) to deconvolute the distinct effects due to the inhomogeneous atomic disorder, localized at the interfaces from the consequent interface-stress-induced anisotropic lattice-parameter changes and (ii) to separate the homogeneous effects of thermal disordering from the inhomogeneous effects due to the interfaces.

Key words

Elastic behavior Atomistic computer simulation Interfaces Thin films Grain boundaries 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    See, for example, Wolf, D. and Yip, S. (Eds.) Materials Interfaces: Atomic-Level Structure and Properties, Chapman and Hall, London, 1992.Google Scholar
  2. 2.
    For a recent review, see Wolf, D. and Yip, S. (Guest Eds.) MRS Bull. XV(9) (1990) and XV(10) (1990).Google Scholar
  3. 3.
    Hull, R. and Bean, J.C., Crit. Rev. Sol. State Mater. Sci., 17 (1992) 507.Google Scholar
  4. 4.
    Wolf, D. and Lutsko, J.F., Phys. Rev. Lett., 60 (1988) 1170.Google Scholar
  5. 5a.
    For recent reviews, see: Brandt, R.G., Mater. Sci. Eng., B6 (1999) 95;Google Scholar
  6. 5b.
    Grimsditch, M. and Schuller, I.K., In Wolf, D. and Yip, S. (Eds.) Materials Interfaces: Atomic-Level Structure and Properties, Chapman and Hall, London, 1992, pp. 354–363;Google Scholar
  7. 5c.
    Grimsditch, M., In Cardona, M. and Guntherodt, G. (Eds.) Topics in Applied Physics: Light Scattering in Solids V, Springer, Berlin, 1989, p. 285;Google Scholar
  8. 5d.
    Yin, B.Y. and Ketterson, J.B., Adv. Phys., 38 (1989) 189.Google Scholar
  9. 6.
    Yang, W.M.C., Tsakalakos, T. and Hilliard, J.E., J. Appl. Phys., 48 (1977) 876.Google Scholar
  10. 7.
    Kueny, A., Grimsditch, M., Miyano, K., Banerjee, I., Falco, C.M. and Schuller, I.K., Phys. Rev. Lett., 48 (1982) 166.Google Scholar
  11. 8.
    Helmersson, U., Todorova, S., Barnett, S.A. and Sundgren, J.-E., J. Appl. Phys., 62 (1987) 491.Google Scholar
  12. 9.
    Davis, B.M., Seidman, D.N., Moreau, A., Ketterson, J.B., Mattson, J. and Grimsditch, M., Phys. Rev., B43 (1991) 9304.Google Scholar
  13. 10.
    Fartash, A., Fullerton, E.E., Schuller, I.K., Bobbin, S.E., Wagner, J.W., Cammarata, R.C., Kumar, S. and Grimsditch, M., Phys. Rev., B44 (1991) 13760.Google Scholar
  14. 11.
    Foiles, S.M., Baskes, M.I. and Daw, M.S., Phys. Rev., B33 (1986) 7983.Google Scholar
  15. 12.
    Wolf, D., Lutsko, J.F. and Kluge, M., In Vitek, V. and Srolovitz, D.J. (Eds.) Atomistic Simulation in MaterialsBeyond Pair Potentials, Plenum Press, New York, NY, 1989, p. 245.Google Scholar
  16. 13 a.
    Wolf, D., Surf. Sci., 226 (1990) 389.Google Scholar
  17. 13 b.
    Wolf, D., Phil. Mag., A63 (1991) 337.Google Scholar
  18. 14.
    See also Wolf, D. and Merkle, K.L., In Wolf, D. and Yip, S. (Eds.) Materials Interfaces: Atomic-Level Structure and Properties, Chapman and Hall, London, 1992, pp. 87–150.Google Scholar
  19. 15.
    Wolf, D., Acta Metall., 37 (1989) 1983.Google Scholar
  20. 16 a.
    Wolf, D., J. Am. Ceram. Soc., 67 (1984) 1.Google Scholar
  21. 16 b.
    Wolf, D., Physica, B131 (1985) 53.Google Scholar
  22. 17.
    Lutsko, J.F., J. Appl. Phys., 65 (1989) 2991.Google Scholar
  23. 18.
    Born, M. and Huang, K., Dynamical Theory of Crystal Lattices, Clarendon Press, Oxford, 1954.Google Scholar
  24. 19 a.
    Ray, J. and Rahman, A., J. Chem. Phys., 80 (1984) 4423.Google Scholar
  25. 19 b.
    Ray, J. and Rahman, A., Phys. Rev., B32 (1985) 733.Google Scholar
  26. 20.
    Wolf, D. and Lutsko, J.F., J. Mater. Res., 4 (1989) 1427.Google Scholar
  27. 21.
    Needs, R.J., Phys. Rev. Lett., 58 (1987) 53.Google Scholar
  28. 22.
    Wolf, D., In Ruhte, M., Evans, A.G., Ashby, M.F. and Hirth, J.P. (Eds.) Metal-Ceramic Interfaces, Pergamon Press, Oxford, 1989, p. 52.Google Scholar
  29. 23.
    Cammarata, R.C. and Sieradzki, K., Phys. Rev. Lett., 62 (1989) 2005.Google Scholar
  30. 24.
    Wolf, D., Surf. Sci., 225 (1990) 117.Google Scholar
  31. 25.
    Wolf, D., Appl. Phys. Lett., 58 (1991) 2081.Google Scholar
  32. 26.
    Wolf, D., Phys. Rev. Lett., 70 (1993) 627.Google Scholar
  33. 27.
    Clemens, B.M. and Eesley, G.L., Phys. Rev. Lett., 61 (1988) 2356.Google Scholar
  34. 28 a.
    Grimsditch, M.H., Phys. Rev., B31 (1985) 6818.Google Scholar
  35. 28 b.
    Grimsditch, M.H. and Nizzoli, F., Phys. Rev., B33 (1986) 5891.Google Scholar
  36. 29.
    Chen, S.P., Voter, A.F. and Albers, R.C., Phys. Rev., B39 (1989) 1395.Google Scholar
  37. 30.
    Wolf, D., Mater. Sci. Eng., A126 (1990) 1.Google Scholar
  38. 31 a.
    Wolf, D. and Kluge, M.D., Scripta Metall. Mater., 24 (1990) 907.Google Scholar
  39. 31 b.
    Kluge, M.D., Wolf, D., Lutsko, J.F. and Phillpot, S.R., J. Appl. Phys., 67 (1990) 2370.Google Scholar
  40. 32.
    Schuller, I.K. and Rahman, A., Phys. Rev. Lett., 50 (1983) 1377.Google Scholar
  41. 33.
    Banerjea, A. and Smith, J.R., Phys. Rev., B35 (1987) 5413.Google Scholar
  42. 34 a.
    Jankowski, A.I. and Tsakalakos, T., J. Phys., F15 (1985) 1279.Google Scholar
  43. 34 b.
    Jankowski, A.I., J. Phys., F18 (1988) 413.Google Scholar
  44. 35.
    Wolf, D. and Lutsko, J.F., J. Appl. Phys., 66 (1989) 1961.Google Scholar
  45. 36 a.
    Wolf, D., J. Phys. Colloque, C4 (1985) 46.Google Scholar
  46. 36 b.
    Wolf, D., J. Phys. Colloque, C4 (1985) 197.Google Scholar
  47. 36 c.
    Wolf, D. and Phillpot, S.R., Mater. Sci. Eng., A107 (1989) 3.Google Scholar
  48. 37.
    Wolf, D., Scripta Metall., 23 (1989) 1913.Google Scholar
  49. 38.
    Wolf, D., Acta Metall., 37 (1989) 2823.Google Scholar
  50. 39.
    Jaszczak, J.A., Phillpot, S.R. and Wolf, D., J. Appl. Phys., 68 (1990) 4573.Google Scholar
  51. 40.
    Jaszczak, J.A. and Wolf, D., J. Mater. Res., 6 (1991) 1207.Google Scholar
  52. 41 a.
    Carlotti, G., Fioretto, D., Socino, G., Rodmacq, B. and Pelosin, V., J. Appl. Phys., 71 (1992) 4897.Google Scholar
  53. 41 b.
    Carlotti, G., Montone, A., Petrillo, C. and Antisari, M.V., J. Phys. Condens. Matter, 5 (1993) 4611.Google Scholar
  54. 42.
    Fullerton, E.E., Schuller, I.K., Parker, F.T., Svinarich, K.A., Eesley, G.L., Badra, R. and Grimsditch, M., J. Appl. Phys., 73 (1993) 7370.Google Scholar
  55. 43.
    Jaszczak, J.A. and Wolf, D., Phys. Rev., B46 (1992) 2473.Google Scholar
  56. 44.
    Ray, J., Compl. Phys. Reports, 8 (1988) 111.Google Scholar
  57. 45.
    Squire, D.R., Holt, A.C. and Hoover, W.G., Physica, 42 (1969) 388.Google Scholar

Copyright information

© ESCOM Science Publishers B.V 1994

Authors and Affiliations

  • D. Wolf
    • 1
  • J. A. Jaszczak
    • 2
  1. 1.Materials Science DivisionArgonne National LaboratoryArgonneUSA
  2. 2.Department of PhysicsMichigan Technological UniversityHoughtonUSA

Personalised recommendations