Foundations of Physics

, Volume 9, Issue 5–6, pp 375–387 | Cite as

Physical basis for minimal time-energy uncertainty relation

  • Y. S. Kim
  • Marilyn E. Noz
Article

Abstract

A physical basis for the minimal time-energy uncertainty relation is formulated from basic high-energy hadronic properties such as the resonance mass spectrum, the form factor behavior, and the peculiarities of Feynman's parton picture. It is shown that the covariant oscillator formalism combines covariantly this time-energy uncertainty relation with Heisenberg's space-momentum uncertainty relation. A pictorial method is developed to describe the spacetime distribution of the localized probability density.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. A. M. Dirac,Proc. R. Soc. (Lond.) 114, 243, 710 (1927).Google Scholar
  2. 2.
    A. Messiah,Quantum Mechanics (North-Holland, Amsterdam, 1964).Google Scholar
  3. 3.
    M. Moshinsky,Am. J. Phys. 44, 1037 (1976).Google Scholar
  4. 4.
    E. P. Wigner, inAspects of Quantum Theory, in Honour of P. A. M. Dirac's 70th Birthday, A. Salam and E. P. Wigner, eds. (Cambridge Univ. Press, London, 1972).Google Scholar
  5. 5.
    W. Heisenberg,Am. J. Phys. 43, 389 (1975).Google Scholar
  6. 6.
    R. P. Feynman,Photon-Hadron Interactions (Benjamin, New York, 1972).Google Scholar
  7. 7.
    R. P. Feynman, inHigh Energy Collisions (Proceeding of the Third International Conference, Stony Brook, New York), C. N. Yanget al., eds. (Gordon and Breach, New York, 1969).Google Scholar
  8. 8.
    J. D. Bjorken and E. A. Paschos,Phys. Rev. 185, 1975 (1969).Google Scholar
  9. 9.
    N. Byers and C. N. Yang,Phys. Rev. 142, 976 (1966).Google Scholar
  10. 10.
    R. P. Feynman, M. Kislinger, and F. Ravndal,Phys. Rev. D 3, 2706 (1971).Google Scholar
  11. 11.
    O. W. Greenberg,Phys. Rev. Lett. 13, 598 (1964); K. T. Mahanthappa and E. C. G. Sudarshan,Phys. Rev. Lett. 14, 163 (1965); O. W. Greenberg and M. Resnikoff,Phys. Rev. 175, 2024 (1968); R. D. Dalitz, inProceedings of International Conference on Symmetries and Quark Models, Ramesh Chand, ed. (Gordon and Breach, New York, 1970).Google Scholar
  12. 12.
    A. L. Licht and A. Pagnamenta,Phys. Rev. D 2, 1150, 1156 (1970).Google Scholar
  13. 13.
    K. Fujimura, T. Kobayashi, and M. Namiki,Prog. Theor. Phys. 43, 73 (1970).Google Scholar
  14. 14.
    Y. S. Kim and M. E. Noz,Phys. Rev. D 8, 3521 (1973).Google Scholar
  15. 15.
    Y. S. Kim and M. E. Noz,Phys. Rev. D 12, 129 (1975); Y. S. Kim,Phys. Rev. D 14, 273 (1976).Google Scholar
  16. 16.
    Y. S. Kim and M. E. Noz,Phys. Rev. D 15, 335 (1977).Google Scholar
  17. 17.
    Y. S. Kim and M. E. Noz,Am. J. Phys. 46, 484 (1978).Google Scholar
  18. 18.
    Y. S. Kim and M. E. Noz,Am. J. Phys. 46, 480 (1978).Google Scholar
  19. 19.
    H. Yukawa,Phys. Rev. 91, 416 (1953).Google Scholar
  20. 20.
    M. Markov,Nuovo Cimento Suppl. 3, 760 (1956).Google Scholar
  21. 21.
    M. Ruiz,Phys. Rev. D 10, 4306 (1974).Google Scholar
  22. 22.
    S. D. Drell, A. Finn, and M. Goldhaber,Phys. Rev. 157, 1402 (1967).Google Scholar
  23. 23.
    P. A. M. Dirac,Rev. Mod. Phys. 21, 392 (1949).Google Scholar
  24. 24.
    Y. S. Kim,J. Korean Phys. Soc. 9, 54 (1976);11, 1 1978).Google Scholar
  25. 25.
    Y. Katayama,Soryusiron Kenkyu (in Japanese)43(2), 154 (1971); J. Lukierski and M. Oziewicz,Phys. Lett. 69B, 339 (1977); D. Dominici and G. Longhi,Nuovo Cimento 42A, 235 (1977); T. Goto,Prog. Theor. Phys. 58, 1635 (1977).Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • Y. S. Kim
    • 1
  • Marilyn E. Noz
    • 2
  1. 1.Center for Theoretical Physics, Department of Physics and AstronomyUniversity of MarylandCollege Park
  2. 2.Department of RadiologyNew York UniversityNew York

Personalised recommendations