Advertisement

Mycopathologia

, Volume 107, Issue 2–3, pp 115–120 | Cite as

Relationship between lipids and aflatoxin biosynthesis

  • C. Fanelli
  • A. A. Fabbri
Article

Abstract

This paper describes the key role of lipids on fungal growth and of lipoperoxidation on the output of aflatoxin biosynthesis both ‘in vitro’ and ‘in vivo’. ‘In vitro’ BHA, BHT and cysteamine, depending their concentration, are capable of reducing or blocking aflatoxin output induced by lipoperoxides or halomethanes in cultures ofAspergillus flavus orA. parasiticus without affecting fungal growth. ‘In vivo’ BHA and BHT significantly reduced aflatoxin production on wheat, maize and sunflower inoculated with aflatoxigenicAspergilli essentially by preventing fungal growth. ‘In vivo’ the seeds surface lipids represent a very important carbon source for fungal growth.

Key words

aflatoxins lipoperoxidation antioxidants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bhatnagar RK, Ahmad S, Kohli KK, Mukerji KG, Venkitasubramanian TA. Induction of polysubstrate monoxygenase and aflatoxin production by phenobarbitone inAspergillus parasiticus. Bioch Bioph Res Comm 1982; 104: 1287–92.Google Scholar
  2. 2.
    Bennett JW, Christensen SB. New perspectives of aflatoxin biosynthesis. Adv Appl Mircobiol 1983; 29: 53–92.Google Scholar
  3. 3.
    Betina V. Mycotoxins, Production, Isolation, Separation and Purification. Amsterdam: Elsevier, 1984.Google Scholar
  4. 4.
    De Luca C, Picardo M, Finotti E, Passi S, Fanelli C. Role of superficial lipids of oily seeds on fungal growth and aflatoxin production. Giorn Bot Ital 1988; 122 (suppl. 1): 154.Google Scholar
  5. 5.
    Detroy RW, Hesseltine CW. Net synthesis of14C-labeled lipids and aflatoxins in resting cells ofAspergillus parasiticus. Dev Ind Microbiol 1969; 10: 127–133.Google Scholar
  6. 6.
    Fabbri AA, Fanelli C, Serafini M. Aflatoxin production on cereals, oil seeds and some organic fractions extracted from sunflower. Accad Naz Sc (dei XL) 1980; 98: 219–228.Google Scholar
  7. 7.
    Fabbri AA, Fanelli C, Panfili G, Passi S, Fasella P. Lipoperoxidation and aflatoxin biosynthesis byAspergillus parasiticus and A. flavus. Journ Gen Microbiol 1983; 129: 3447–3453.Google Scholar
  8. 8.
    Fanelli C, Fabbri AA, Passi S. Growth requirements and lipid metabolism ofAspergillus flaws. Trans Brmycol Soc 1980; 75: 371–375.Google Scholar
  9. 9.
    Fanelli C, Fabbri AA, Finotti E, Passi S. Stimulation of aflatoxin biosynthesis by lipophilic epoxides. Journ Gen Microbiol 1983; 129: 1721–1723.Google Scholar
  10. 10.
    Fanelli C, Fabbri AA, Finotti E, Fasella P, Passi S. Free radicals and aflatoxin biosynthesis. Experientia 1983; 40: 191–193.Google Scholar
  11. 11.
    Fanelli C, Fabbri AA, Pieretti S, Panfili G, Passi S. Effect of organic solvents on aflatoxin production in cultures ofAspergillus parasiticus. Trans br mycol Soc 1985; 84: 591–593.Google Scholar
  12. 12.
    Fanelli C, Fabbri AA, Pieretti S, Finotti E, Passi S. Effect of different antioxidants and free radical scavengers on aflatoxin production. Mycot Res 1985; 1: 65–69.Google Scholar
  13. 13.
    Fanelli C, Fabbri AA, Boniforti L, Passi S. Inhibition of CCl4-stimulate aflatoxin production ofAspergillus parasiticus by mercaptoethylamine and mercaptoethyldimethylamine. Period Biol 1986; 88(3): 277–285.Google Scholar
  14. 14.
    Fanelli C, Fabbri AA, Panfili G, Castoria R, De Luca C, Passi S. Aflatoxin congeners biosynthesis induced by lipoperoxidation. Exper Mycol (in press).Google Scholar
  15. 15.
    Frankel EN. Lipid oxidation. Proc Lipid res 1980; 19: 1–22.Google Scholar
  16. 16.
    Gupta SK, Maggon KK, Venkitasubramanian TA. Effect of zinc on TCA cycle intermediates and enzymes in relation to aflatoxin biosynthesis. Journ Gen Microbiol 1977; 99: 43–8.Google Scholar
  17. 17.
    Heathcote JC, Hibbert JR. Aflatoxins: chemical and biologic aspects. Amsterdam: Elsevier, 1978.Google Scholar
  18. 18.
    Lillehoj EB, Garcia WJ, Lambrow M.Aspergillus flavus infection and aflatoxin production in corn: influence of trace elements. Appl Microbiol 1974; 28: 763–7.Google Scholar
  19. 19.
    Maggon KK, Gupta SK, Venkitasubramanian TA. Biosynthesis of aflatoxis. Bact Rev 1977; 41: 822–55.Google Scholar
  20. 20.
    Passi S, Nazzaro-Porro M, Fanelli C, Fabbri AA, Fasella P. Role of lipoperoxidation in aflatoxin production. Appl Microbiol Biotechnol 1984; 19: 186–90.Google Scholar
  21. 21.
    Passi S, Fanelli C, Fabbri AA, Finotti E, Panfili G, Nazzaro-Porro M. Effect of halomethanes on aflatoxin induction in cultures ofAspergillus parasiticus. Journ Gen Microbiol 1985; 131: 687–91.Google Scholar
  22. 22.
    Passi S, Nazzaro-Porro M, Picardo M, Finotti E, Fabbri AA, Fanelli C. Microsomal and mitochondrial involvement in production of aflatoxins induced by carbon tetrachloride and hydroperoxide in cultures ofAspergillus parasiticus. Trans Br mycol Soc 1986; 87: 451–6.Google Scholar
  23. 23.
    Passi S, DeLuca C, Picardo M, Finotti E, Fabbri AA, Panfili G, Fanelli C. Effect of antioxidants and free radical scavengers on aflatoxin production in vvo. In: Donahaye E, Navarro S, eds. Proc 4th Int Work Conf Stored-Product Protection, Tel Aviv, Israel, Sept 1986. Jerusalem: Caspit, 1987: 111–126.Google Scholar
  24. 24.
    Radwan SS, Soliman AH. Arachidonic acid from fungi utilizing fatty acids with shorter chains as sole sources of carbon and energy. Journ Gen Microbiol 1988; 134: 387–393.Google Scholar
  25. 25.
    Recknagel RO, Glende Jr EA, Hruszewycz AM. Chemical mechanism in carbon tetrachloride toxicy. In: Pryor WA ed. Free radicals in Biology vol III. New York: Academic Press, 1977. 97–132.Google Scholar
  26. 26.
    Reynolds ES, Treinen Moslen M. Free radical damage in liver. In: Pryor WA ed. Free radicals in Biology vol IV. New York: Academic Press, 1980; 49–94.Google Scholar
  27. 27.
    Shih CN, Marth EH. Aflatoxin formation, lipid synthesis and glucose metabolism byAspergillus parasitions during incubation with and without agitation. Biochem Bioph Acta 1974; 338: 286–296.Google Scholar
  28. 28.
    Steyn PS, Vleggaar R, Wessels PL. The biosynthesis of aflatoxins and its congeners. In: Steyn PS ed. The Biosynthesis of Mycotoxins. A study in secondary metabolism. New York: Academic Press, 1980; 105–155.Google Scholar
  29. 29.
    Swartz HM, Dodd JF. The role of ascorbic acid on radical reactions in vivo. In: Rodgers MAJ, Powers EL eds. Oxy-radicals in Chemistry and Biology. New York: Academic Press, 1981; 109–118.Google Scholar
  30. 30.
    Towsend CA, Christensen SB, Trautwein K. Hexanoate as starter unit in polyketide biosynthesis. Journ Am Chem Soc 1984; 106: 3868–3869.Google Scholar
  31. 31.
    Wills ED. The role of dietary Components in Oxidative Stress in Tissues. In: Sies H, ed. Oxidative stress. London: Academic Press, 1985; 197–218.Google Scholar
  32. 32.
    Witting LA. Vitamin E and lipid antioxidants in free radicalinitiated reactions. In: Pryor WA, ed. Free radicals in biology, Vol IV. New York: Academic Press, 1980; 295–319.Google Scholar
  33. 33.
    Zaika LL, Buchanan RL. Review of compounds affecting the Biosynthesis or Bioregulation of Aflatoxins. Journ Food Prot 1987; 50: 691–708.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • C. Fanelli
    • 1
  • A. A. Fabbri
    • 1
  1. 1.Dipartimento di Biologia vegetaleUniversità di Roma ‘La Sapienza’ LargoRomaItaly

Personalised recommendations