Advertisement

Journal of comparative physiology

, Volume 98, Issue 2, pp 157–160 | Cite as

The effect of buoyancy induced lung volume changes on respiratory frequency in a chelonian (Caretta caretta)

  • William K. Milsom
  • Kjell Johansen
Article

Summary

Aquatic turtles utilize changes in lung volume in their buoyancy regulation. The relationship between lung volume and ventilatory activity have been studied in the turtle,Caretta caretta. Lung volume was varied in response to specific gravity changes brought about by adding weights or floats to the animals. End inspiratory lung volumes were made to vary from 4.4 to 8.1 ml/100 body weight. These lumg volume changes maintained specific gravity relatively constant. An inverse linear relationship exists between lung volume and frequency of respiration.

Keywords

Body Weight Respiration Linear Relationship Human Physiology Specific Gravity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Breuer, J.: Die Selbststeuerung der Atmung durch den Nervus vagus. S.-B. Akad. Wiss. Wien58, 909–937 (1868)Google Scholar
  2. Christie, R. V.: Dyspnoea in relation to the visco-elastic properties of the lungs. Proc. roy. Soc. Med.46, 381–386 (1953)Google Scholar
  3. Euler, C. von, Herro, F., Wexler, I.: Control mechanisms determining rate and depth of respiratory movements. Respir. Physiol.10, 93–108 (1970)Google Scholar
  4. Guz, A., Noble, M. I. M., Eisele, J. H., Trenchard, D.: The role of vagal inflation reflexes in man and other animals. Ciba Foundation Symposium: Herring-Breuer Centenary Symposium (ed. R. Porter), p. 17–40. London: Churchill 1969Google Scholar
  5. Herring, E.: Die Selbststeuerung der Atmung durch den Nervus vagus. S.-B. Akad. Wiss. Wien57, 672–677 (1868)Google Scholar
  6. Jackson, D. C.: Mechanical basis for lung volume variability in the turtle,Pseudemys scripta elegans. Amer. J. Physiol.220, 754–758 (1971)Google Scholar
  7. Koller, E. A., Ferrer, P.: Studies on the role of the lung deflation reflex. Respir. Physiol.10, 172–183 (1970)Google Scholar
  8. Mead, J.: Control of respiratory frequency. J. appl. Physiol.15, 325–337 (1960)Google Scholar
  9. Milsom, W. K.: Buoyancy control in the Atlantic loggerhead turtle,Caretta caretta caretta (Linné). M. S. thesis, Univ. Wash., Seattle, Washington (1974)Google Scholar
  10. Milsom, W. K.: Development of buoyancy control in juvenile Atlantic loggerhead turtles,Caretta caretta. Copeia1975 (4), in press (1975)Google Scholar
  11. Otis, A. B., Fenn, W. O., Rahn, H.: Mechanics of breathing in man. J. appl. Physiol.2, 592–607 (1950)Google Scholar
  12. Widdicombe, J. G.: Respiratory reflexes. In: Handbook of physiology, sect. 3, vol. I: Respiration (W. O. Fenn, H. Rahn, eds.), p. 585–630. Washington, D. C.: Am. Physiol. Soc. 1964Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • William K. Milsom
    • 1
    • 2
  • Kjell Johansen
    • 1
    • 2
  1. 1.Department of ZoologyUniversity of WashingtonSeattleUSA
  2. 2.Department of ZoophysiologyUniversity of AarhusAarhusDenmark

Personalised recommendations