Advertisement

Journal of Biological Physics

, Volume 21, Issue 2, pp 83–112 | Cite as

A theoretical model of sinusoidal forearm tracking with delayed visual feedback

  • Peter Tass
  • Arne Wunderlin
  • Michael Schanz
Article

Abstract

We present a phenomenological model to an experiment, where a person is systematically confronted with a delayed effect of her or his reaction to a time-periodic external signal. The model equations are derived from purely macroscopic considerations. Applying methods developed in the realm of synergetics we can analyze the first instability in the person's behaviour semi-analytically. A careful numerical study is devoted to the higher order instabilities and a comparison between experiment and the results obtained from our model is performed in detail.

Key words

visual tracking delayed feedback differential-delay equations stability analysis instabilities nonlinear oscillations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexander, G.E., Crutcher, M.D., and DeLong, M.R.: Basal ganglia-thalamocortical circuits: ‘Parallel substrates for motor, oculomotor, ‘prefrontal’ and ‘limbic’ functions’,Progr. Brain Res. 85 (1990), 119–146.Google Scholar
  2. 2.
    Beuter, A., Larocque, D., and Glass, L.: Complex oscillations in a human motor system,J. Mot. Behav. 21 (1989), 277–289.Google Scholar
  3. 3.
    Beuter, A., Milton, J.G., Labrie, C., Glass, L., and Gauthier, S.: Delayed Visual Feedback and Movement Control in Parkinson's Disease,Exp. Neurol. 110 (1990), 228–235.Google Scholar
  4. 4.
    Beuter, A., Bélair, J., and Labrie, C.: Feedback, delays, and dynamics of oscillatory behaviors in patients with neurological diseases,Bull. Math. Biol. 55(3) (1993), 525–541.Google Scholar
  5. 5.
    Glass, L. and Mackey, M.C.: Pathological conditions resulting from instabilities in physiological control systems,Ann. N.Y. Acad. Sci. 316 (1979), 214–235.Google Scholar
  6. 6.
    Glass, L. and Mackey, M.C.:From Clocks to Chaos, University Press, Princeton, 1988.Google Scholar
  7. 7.
    Glass, L., Beuter, A., and Larocque, D.: Time Delays, Oscillations and Chaos in Physiological Control Systems,Math. Biosci. 90 (1988), 111–125.Google Scholar
  8. 8.
    Glass, L., Beuter, A., and Larocque, D.: ‘Time Delays, Oscillations, and Chaos in Physiological Control Systems’, in A.S. Perelson, B. Goldstein, M. Dembo, J.A. Jadquez (eds.)Nonlinearity in Biology and Medicine Elsevier, New York, 1988, pp. 111–125.Google Scholar
  9. 9.
    Guckenheimer, J. and Holmes, P.:Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, Berlin, Heidelberg, New York, 1990.Google Scholar
  10. 10.
    Guevara, M.R., Glass, L., and Shrier, A.: Phase locking, period-doubling bifurcation, and irregular dynamics in periodically stimulated cardiac cells,Science 214 (1981), 1350–1353.Google Scholar
  11. 11.
    Haken, H.:Synergetics: An Introduction, Springer, Berlin, Heidelberg, New York, 1977.Google Scholar
  12. 12.
    Haken, H.:Advanced Synergetics, Springer, Berlin, Heidelberg, New York, 1983.Google Scholar
  13. 13.
    Haken, H., Kelso, J.A.S., and Bunz, H.: A Theoretical Model of Phase Transitions in Human Hand Movements,Biol. Cybern. 51 (1985), 347–356.Google Scholar
  14. 14.
    Schöner, G., Haken, H., and Kelso, J.A.S.: A Stochastic Theory of Phase Transitions in Human Hand Movement,Biol. Cybern. 53 (1986), 247–257.Google Scholar
  15. 15.
    Hale, J.K. and Verdyn Lunel, S.M.:Introduction to Functional Differential Equations, Springer, Berlin, Heidelberg, New York, 1993.Google Scholar
  16. 16.
    Kelso, J.A.S.: ‘Phase Transitions: Foundations of Behavior’, in H. Haken and M. Stadler (eds.)Synergetics of Cognition Springer, Berlin, Heidelberg, New York, 1990.Google Scholar
  17. 17.
    Kuramoto, Y.:Chemical Oscillations, Waves, and Turbulence, Springer, Berlin, Heidelberg, New York, 1984.Google Scholar
  18. 18.
    Langenberg, U., Kessler, K., Hefter, H., Cooke, J.D., Brown, S.H., and Freund, H.-J.: Effects of delayed visual feedback during sinusoidal visuomotor tracking,Soc. Neurosci. Abstr. Suppl.5 (1992), 209.Google Scholar
  19. 19.
    Le Berre, M., Ressayre, E., Tallet, A., Gibbs, H.M., Kaplan, D.L., and Rose M.H.: Conjecture on the dimensions of chaotic attractors of delayed-feedback dynamical systems,Phys. Rev. A 35 (1987), 4020–4022.Google Scholar
  20. 20.
    Longtin, A., Milton, J.G., Bos, J.E., and Mackey, M.C.: Noise and critical behavior of the pupil light reflex at oscillation onset,Phys. Rev. A 41 (1990). 6992–7005.Google Scholar
  21. 21.
    Mackey, M.C. and Glass, L.: ‘Oscillations and chaos in physiological control systems’,Science 197 (1977), 287–289.Google Scholar
  22. 22.
    Mackey, M.C. and Milton, J.G.: Dynamical diseases,Ann. N.Y. Acad. Sci. 504 (1988), 16–32.Google Scholar
  23. 23.
    Merton, P.A., Morton, H.B., and Rashbass, C.: Visual feedback in hand tremor,Nature 216 (1967), 583–584.Google Scholar
  24. 24.
    Miall, R.C., Weir, D.J., and Stein, J.F.: Visuomotor Tracking with Delayed Visual Feedback,Neurosci. 16 (1985), 511–520.Google Scholar
  25. 25.
    Murray, J.D.:Mathematical Biology, Springer, Berlin, Heidelberg, New York, 1990.Google Scholar
  26. 26.
    Reimann, H.A.:Periodic Diseases F.A. Davis, Philadelphia, 1963.Google Scholar
  27. 27.
    Rensing, L., Van der Heiden, U., and Mackey, M.C. (eds.):Temporal Disorder in Human Oscillatory Systems, Springer, Berlin, Heidelberg, New York, 1987.Google Scholar
  28. 28.
    Vercher, J.-L. and Gauthier, G.M.: Oculo-manual coordination control: Ocular and manual tracking of visual targets with delayed visual feedback of the hand motion,Exp. Brain Res. 90 (1992), 599–609.Google Scholar
  29. 29.
    Wischert, W., Wunderlin, A., Pelster, A., Olivier, M., and Groslambert, J.: Delay-Induced Instabilities in Nonlinear Feedback Systems,Phys. Rev. E 49 (1994), 203–219.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Peter Tass
    • 1
  • Arne Wunderlin
    • 2
  • Michael Schanz
    • 2
  1. 1.Department of NeurologyHeinrich-Heine-UniversityDüsseldorfGermany
  2. 2.Institute for Theoretical Physics and SynergeticsUniversity of StuttgartStuttgartGermany

Personalised recommendations