Boundary-Layer Meteorology

, Volume 65, Issue 3, pp 215–248 | Cite as

Roll vortices in the planetary boundary layer: A review

  • D. Etling
  • R. A. Brown


Roll vortices may be loosely defined as quasi two-dimensional organized large eddies with their horizontal axis extending through the whole planetary boundary layer (PBL). Their indirect manifestation is most obvious in so-called cloud streets as can be seen in numerous satellite pictures. Although this phenomenon has been known for more than twenty years and has been treated in a review by one of us (R.A.Brown) in 1980, there has been a recent resurgence in interest and information. The interest in ocena/land-atmosphere interactions in the context of climate modeling has led to detailed observational and modeling efforts on this problem. The presence of rolls can have a large impact on flux modelling in the PBL. Hence, we shall review recent advances in our understanding of organized large eddies in the PBL and on their role in vertical transport of momentum, heat, moisture and chemical trace substances within the lowest part of the atmosphere.


Atmosphere Vortex Boundary Layer Horizontal Axis Large Impact 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agee, E.M.: 1982, ‘An Introduction to Shallow Convective Systems’. In: Cloud Dynamics (E.M. Agee and T. Asai, Eds), D. Reidel, Dordrecht, 3–30.Google Scholar
  2. Asai, T.: 1970, ‘Stability of Plane Parallel Flow with Variable Vertical Shear and Unstable Stratification’,J. Meteorol. Soc. Japan 48, 129–139.Google Scholar
  3. Asai, T., and Nakasuji, I.: 1973, ‘The Stability of Ekman Boundary Flow with Thermally Unstable Stratification’,J. Meterol. Soc., Japan 51, 29–42.Google Scholar
  4. Atlas, D., Walter, B., Chou, S.-H. and Sheu, P.J.: 1986, ‘The Structure of the Unstable Marine Boundary Layer Viewed by Lidar and Aircraft Observations’,J. Atmos. Sci. 43, 1301–1318.Google Scholar
  5. Becker, P.: 1987, ‘Three Dimensional Investigations of Roll Vortices: A Case Study’,Beitr. Phys. Atmosph. 60, 170–179.Google Scholar
  6. Bennetts, D.A., and Hoskins, B.J.: 1979, ‘Conditional Symmetric Instability — Possible Explanation for Frontal Rainbands’,Quart. J. Roy. Meteorol. Soc. 105, 945–962.Google Scholar
  7. Brown, R.A.: 1970, ‘A Secondary Flow Model for the Planetary Boundary Layer’,J. Atmos. Sci. 27, 742–757.Google Scholar
  8. Brown, R.A.: 1972, ‘On the Inflection Point Instability of a Stratified Ekman Boundary Layer’,J. Atmos. Sci. 29, 850–859.Google Scholar
  9. Brown, R.A.: 1974a, ‘Analytic Methods in Planetary Boundary Layer Modeling’, Adam Hilger LTD., London, and Halstead Press, John Wiley and Sons, New York, 150 pp.Google Scholar
  10. Brown, R.A.: 1974b, ‘Matching Classical Boundary Layer Solutions Toward a Geostrophic Drag Coefficient Relation’,Boundary-Layer Meteorol. 7, 489–500.Google Scholar
  11. Brown, R.A.: 1980, ‘Longitudinal Instabilities and Secondary Flows in the Planetary Boundary Layer: A Review’,Rev. Geophys. Space Phys. 18, 683–697.Google Scholar
  12. Brown, R.A.: 1981, ‘On the Use of Exchange Coefficients in Modelling Turbulent Flow’,Boundary-Layer Meteorol. 20, 111–116.Google Scholar
  13. Brown, R.A.: 1991, ‘Fluid Mechanics of the Atmosphere’,Academic Press, Vol. 47 of the International Geophysics Series, 497 pp.Google Scholar
  14. Brown, R.A. and R. Foster: 1991, ‘Comparison of a 1-D Analytic PBL Model with Secondary Flow and a Second-Order Closure Model Using GCM Data’,Proceedings of AGU Fall Meeting, San Francisco, EOS 72, Supplement, 79.Google Scholar
  15. Brown, R.A. and T. Liu: 1982, ‘An Operational Large-Scale Marine Planetary Boundary Layer Model’,J. Applied Meteorol. 21, 261–269.Google Scholar
  16. Brown, R.A. and G. Levy: 1986, ‘Ocean Surface Pressure Fields from Satellite Sensed Winds’,Mon. Wea. Rev. 114, 2197–2206.Google Scholar
  17. Brümmer, B.: 1985, ‘Structure, Dynamics and Energetics of Boundary Layer Rolls from KonTur Aircraft Observations’,Beitr. Phys. Atmosph. 58, 237–254.Google Scholar
  18. Brümmer, B., Latif, M.: 1985, ‘Some Studies on Inflection Point Instability’,Beitr. Phys. Atmosph. 58, 117–126.Google Scholar
  19. Brümmer, B., Bakan, S. and Hinzpeter, H.: 1985, ‘KONTUR: Observations of Cloud Streets and Open Cellular Structures’,Dyn. Atmos. Oceans 9, 281–296.Google Scholar
  20. Busse, F.H.: 1978, ‘Non-linear Properties of Thermal Convection’,Rep. Prog. Phys. 41, 1929–1967.Google Scholar
  21. Caldwell, D.R., and Van Atta, C.W.: 1970, ‘Characteristics of Ekman Boundary Layer Instabilities’,J. Fluid Mech. 44, 79–95.Google Scholar
  22. Chlond, A.: 1985, ‘A Study of Roll Vortices in the Atmospheric Boundary Layer’,Beitr. Phys. Atmos. 58, 17–30.Google Scholar
  23. Chlond, A.: 1987, ‘A Numerical Study of Horizontal Roll Vortices in Neutral and Unstable Atmospheric Boundary Layers’,Beitr. Phys. Atmosph. 60, 144–169.Google Scholar
  24. Chlond, A.: 1988, ‘Numerical and Analytical Studies of Diabatic Heating Effect upon Flatness of Boundary Layer Rolls’,Beitr. Phys. Atmosph. 61, 312–329.Google Scholar
  25. Chlond, A.: 1992, ‘Three-Dimensional Simulation of Cloud Street Development During a Cold Air Outbreak’,Boundary-Layer Meteorol. 58, 161–200.Google Scholar
  26. Chou, S.-H., Atlas, D. and Yeh, E.-N.: 1986, ‘Turbulence in a Convective Marine Atmospheric Boundary Layer’,J. Atmos. Sci. 43, 547–564.Google Scholar
  27. Chou, S.-H. and Zimmermann, J.: 1989, ‘Bivariate Conditional Sampling of Buoyancy Flux during an Intense Cold-Air Outbreak’,Boundary-Layer Meteorol. 46, 93–112.Google Scholar
  28. Chou, S.H. and Ferguson, M.D.: 1991, ‘Heat Fluxes and Roll Circulations over the Western Gulf Stream during an Intense Cold-Air Outbreak’,Boundary-Layer Meteorol. 55, 255–282.Google Scholar
  29. Christian, T.W. and Wakimoto, R.M.: 1989, ‘The Relationship Between Radar Reflectivities and Clouds Associated with Horizontal Roll Convection on 8 August 1982’,Mon. Wea. Rev. 117, 1530–1544.Google Scholar
  30. Chrobok, G., Raasch, S. and Etling, D.: 1992, ‘A Comparison of Local and Non-Local Turbulence Closure Methods for the Case of a Cold Air Outbreak’,Boundary-Layer Meteorol. 58, 69–90.Google Scholar
  31. Clark, T.L., Hauf, T. Kuettner, J.P.: 1986, ‘Convectively Forced Internal Gravity Waves: Results from Two-Dimensional Numerical Experiments’,Quart. J. Roy. Meteorol. Soc. 112, 899–925.Google Scholar
  32. Coleman, G.N., Ferzinger, J.H. and Spalart, P.R.: 1990, ‘A Numerical Study of the Turbulent Ekman Layer’,J. Fluid Mech. 213, 313–348.Google Scholar
  33. Coleman, G.N.: 1990, ‘A Numerical Study of the Stratified Turbulent Ekman Layer’,Ph D. thesis, Dep. Mechanical Engineering, Stanford University.Google Scholar
  34. Criminale, W.O. and Spooner, G.F.: 1981, ‘Maintenance of Oscillations in a Turbulent Ekman Layer’,Boundary-Layer Meteorol. 21, 407–421.Google Scholar
  35. Deardorff, J.W.: 1972, ‘Numerical Investigation of Neutral and Unstable Planetary Boundary Layers’,J. Atmos. Sci. 29, 91–115.Google Scholar
  36. Drazin, P.G. and Reid, W.H.: 1981, ‘Hydrodynamic Stability’,Cambridge University Press, 525 ppGoogle Scholar
  37. Emanuel, K.A.: 1979, ‘Inertial Instabaility and Mesoscale Convective Systems. Part I: Linear Theory of Inertial Instability in Rotating Viscous Fluids’,J. Atmos. Sci. 36, 2425–2449.Google Scholar
  38. Etling, D.: 1971, ‘The Stability of an Ekman Boundary Flow as Influenced by Thermal Stratification’,Beitr. Phys. Atmosph. 44, 168–186.Google Scholar
  39. Etling, D. and Wippermann, F.: 1975, ‘On the Instability of a Planetary Boundary Layer with Rossby-Number Similarity’,Boundary-Layer Meteorol. 9, 341–360.Google Scholar
  40. Etling, D. and Raasch, S.: 1987, ‘Numerical Simulation of Vortex Roll Development During a Cold Air Outbreak’,Dyn. Atmos. Oceans 10, 277–290.Google Scholar
  41. Eymard, L.: 1985, ‘Convective Organization in a Tropical Boundary Layer: An Interpretation of Doppler Radar Observations Using Asai's Model’,J. Atmos. Sci. 42, 2844–2855.Google Scholar
  42. Eymard, L. and Weill, A.: 1988, ‘Dual Doppler Radar Investigation of the Tropical Convective Boundary Layer’,J. Atmos. Sci. 45, 853–864.Google Scholar
  43. Faller, A.J. and Auer, S.J.: 1987, ‘The Roles of Langmuir Circulation in the Dispersion of Surface Tracers’,J. Phys. Oceanogr. 18, 1108–1123.Google Scholar
  44. Faller, A.J. and Kaylor, R.E.: 1966, ‘A Numerical Study of the Laminar Ekman Layer’,J. Atmos. Sci. 23, 466–480.Google Scholar
  45. Faller, A.J. and Kaylor, R.E.: 1967, ‘Instability of the Ekman Spiral with Applications to the Planetary Boundary Layer’,Phys. Fluids 10, 212–219.Google Scholar
  46. Foster, R. and R.A. Brown: 1991, ‘An Investigation into the Importance of Stratification, Thermal Wind, Non-Stationarity and Rolls in PBL Parameterizations’,Proceedings of AGU Fall Meeting, San Francisco, EOS 72, Supplement, 79.Google Scholar
  47. Gammelsrod, T.: 1975, ‘Instability of Couette Flow in a Rotating System and Origin of Langmuir Circulations’,J. Geophys. Res. 80, 5069–5075.Google Scholar
  48. Gerling, T.W.: 1986, ‘Structure of the Surface Wind Field from the Seasat SAR’,J. Geophys. Res. 91, 2308–2320.Google Scholar
  49. Gossard, Earl E. and Moninger, W.R.: 1975, ‘The Influence of a Capping Inversion on the Dynamic and Convective Instability of a Boundary Layer Model with Shear’,J. Atmos. Sci. 32, 2111–2124.Google Scholar
  50. Grossman, R.L.: 1982, ‘An Analysis of Vertical Velocity Spectra Obtained in theBOMEX Fair-Weather, Trade-Wind Boundary Layer’,Boundary-Layer Meteorol. 23, 323–357.Google Scholar
  51. Grossman, R.L. and Betts, A.K.: 1990, ‘Air-Sea Interaction During an Extreme Cold Air Outbreak from the Eastern Coast of the United States’,Mon. Wea. Rev. 118, 324–342.Google Scholar
  52. Haack, T., and Shirer, H.N.: 1992, ‘Mixed Convective-Dynamic Roll Vortices and their Effects on Initial Wind and Temperature Profiles’,J. Atmos. Sci. 49, 1181–1201.Google Scholar
  53. Haines, D.A.: 1982, ‘Horizontal Roll Vortices and Crown Fires’,J. Appl. Meteorol. 21, 751–762.Google Scholar
  54. Hauf, T. and Clark, T.L.: 1989, ‘Three-Dimensional Numerical Experiments on Convectively Forced Internal Gravity Waves’,Quart. J. Roy. Meteorol. Soc. 115, 309–333.Google Scholar
  55. Hein, P. and Brown, R.A.: 1988, ‘Observations of Longitudinal Roll Vortices During Arctic Cold Air Outbreaks over Open Water’,Boundary Layer Meteorol. 45, 177–199.Google Scholar
  56. Helfand, H.M. and Kalnay, E.: 1983, ‘A Model to Determine Open or Closed Cellular Convection’,J. Atmos. Sci. 40, 631–650.Google Scholar
  57. Huerre, C.H.: 1984, ‘Perturbed Free Shear Layers’,Ann. Rev. Fluid Mech. 16, 305–424.Google Scholar
  58. Kaylor, R.E. and Faller, A.J.: 1972, ‘Instability of the Stratified Ekman Boundary Layer and the Generation of Internal Waves’,J. Atmos. Sci. 29, 497–509.Google Scholar
  59. Kelly, R.E., 1977, ‘The Onset and Development of Rayleigh-Benard Convection in Shear Flows: A Review’,Physicochemical Hydrodynamics (B.B. Spalding, Ed.), Advance Publications 65-79.Google Scholar
  60. Kelly, R.D.: 1982, ‘A Single Doppler Radar Study of Horizontal Roll Convection in a Lake-Effect Snowstorm’,J. Atmos. Sci. 39, 1521–1531.Google Scholar
  61. Kelly, R.D.: 1984, ‘Horizontal Roll and Boundary Layer Interrelationships Observed over Lake Michigan’,J. Atmos. Sci. 41, 1816–1826.Google Scholar
  62. Krishnamurti, R.: 1975, ‘On Cellular Cloud Patterns. Parts 1-3’,J. Atmos. Sci. 32, 1355–1383.Google Scholar
  63. Kropfli, R.A., and Kohn, N.M.: 1978, ‘Persistent Horizontal Rolls in the Urban Mixed Layer as Revealed by Dual-Doppler-Radar’,J. Appl. Meteorol. 17, 669–676.Google Scholar
  64. Küttner, J.P.: 1959, ‘The Band structure of the Atmosphere’,Tellus 11, 267–294.Google Scholar
  65. Küttner, J.P.: 1971, ‘Cloud Bands in the Atmosphere’,Tellus 23, 404–425.Google Scholar
  66. Leibovich, S.: 1983, ‘The Flow and Dynamics of Langmuir Circulations’,Ann. Rev. Fluid. Mech. 15, 391–427.Google Scholar
  67. Leibovich, S., and Lele, S.K.: 1985, ‘The Influence of the Horizontal Component of Earth's Angular Velocity on the Stability of the Ekman Layer’,J. Fluid. Mech. 150, 41–87.Google Scholar
  68. LeMone, M.A.: 1973, ‘The Structure and Dynamics of Horizontal Roll Vortices in the Planetary Boundary Layer’,J. Atmos. Sci. 30, 1077–1091.Google Scholar
  69. LeMone, M.A.: 1976, ‘Modulation of Turbulence Energy by Longitudinal Rolls in an Unstable Boundary Layer’,J. Atmos. Sci. 33, 1308–1320.Google Scholar
  70. LeMone, M.A. and Pennell, W.T.: 1976, ‘The Relationship of Trade Wind Cumulus Distribution to Subcloud Layer Fluxes and Structure’,Mon. Wea. Rev. 101, 524–539.Google Scholar
  71. LeMone, M.A. and Meitin, R.J.: 1984, ‘Three Examples of Fair-Weather Mesoscale Boundary Layer Convection in the Tropics’,Mon. Wea. Rev. 112, 1985–1997.Google Scholar
  72. Lilly, D.K.: 1966, ‘On the Instability of Ekman Boundary Flow’J. Atmos. Sci. 23, 481–494.Google Scholar
  73. Lilly, D.K. and Schneider, J.M.: 1990, ‘Dual Doppler Measurements of Momentum Flux: Results From the PHOENIX II Study of the Convective Boundary Layer’,Proc. 9th. Symp. Turb. Diff., Roskilde, Denmark, Amer. Meteorol. Soc., Boston, 98–101.Google Scholar
  74. Liu, J.I.C.: 1989, ‘Coherent Structures in Transitional and Turbulent Free Shear Flows’,Ann. Rev. Fluid Mech. 21, 285–315.Google Scholar
  75. Martin, T. and Bakan, S.: 1991, ‘Airplane Investigation of a Case of Convective Cloud Bands over the North Sea’,Boundary Layer-Meteorol. 50, 359–380.Google Scholar
  76. Mason, P.J.: 1983, ‘On the Influence of Variation in Monin-Obukhov Length on Horizontal Roll Vortices in an Inversion-Capped Planetary Boundary Layer’,Boundary-Layer Meteorol. 27, 43–68.Google Scholar
  77. Mason, P.J.: 1985, ‘A Numerical Study of Cloud Streets in the Planetary Boundary Layer’,Boundary-Layer Meteorol. 32, 281–304.Google Scholar
  78. Mason, P.J.: 1989, ‘Large-Eddy Simulation of the Convective Atmospheric Boundary Layer’,J. Atmos. Sci. 46, 1492–1516.Google Scholar
  79. Mason, P.J. and Sykes, R.I.: 1980, ‘A Two-Dimensional Numerical Study of Horizontal Roll Vortices in the Neutral Atmospheric Boundary Layer’,Q. J. R. Meteorol. Soc. 106, 351–366.Google Scholar
  80. Mason, P.J. and Sykes, R.I.: 1982, ‘A Two-Dimensional Numerical Study of Horizontal Roll Vortices in an Inversion Capped Planetary Boundary Layer’,Q. J. R. Meteorol. Soc. 108, 801–823.Google Scholar
  81. Mason, P.J. and Thomson, D.J.: 1987, ‘Large-Eddy Simulations of the Neutral-Static-Stability Planetary Boundary Layer’,Q. J. R. Meteorol. Soc. 113, 413–443.Google Scholar
  82. Melfi, S.H., Spinhirne, J.D., Chou, S.-H. and Palm, S.P.: 1985, ‘Lidar Observations of Vertically Organized Convection in the Planetary Boundary Layer over the Ocean’,J. Climate Appl. Meteorol. 24, 806–821.Google Scholar
  83. Mikhaylova, L.A. and Ordanovich, A.Y.: 1991, ‘Coherent Structures in the Atmospheric Boundary Layer’,Izv. Atm. Ocean. Phys. 27, 413–427.Google Scholar
  84. Miura, Y.: 1986, ‘Aspect Ratios of Longitudinal Rolls and Convection Cells Observed During Cold Air Outbreaks’,J. Atmos. Sci. 43, 26–39.Google Scholar
  85. Moeng, C.H.: 1984, ‘A Large Eddy Simulation for the Study of Planetary Boundary Layer Turbulence’J. Atmos. Sci. 41, 2052–2062.Google Scholar
  86. Moeng, C.H. and Wyngaard, J.C.: 1989, ‘Evaluation of Turbulent Transport and Dissipation Closures in Second-Order Modeling’,J. Atmos. Sci. 46, 2311–2330.Google Scholar
  87. Mourad, P.D., Brown, R.A.: 1990, ‘On Multiscale Large Eddy States in Weakly Stratified Planetary Boundary Layers’,J. Atmos. Sci. 47, 414–438.Google Scholar
  88. Müller, D., Etling, D., Kottmeier, Ch. and Roth, R.: 1985, ‘On the Occurrence of Cloud Streets over Northern Germany’,Q. J. R. Meteorol. Soc. 111, 761–772.Google Scholar
  89. Nieuwstadt, F.T.M. and Brost, R.A.: 1986, ‘The Decay of Convective Turbulence’,J. Atmos. Sci. 43, 532–546.Google Scholar
  90. Pennell, W.T. and LeMone, M.A.: 1974, ‘An Experimental Study of Turbulence Structure in the Fair-Weather Trade Wind Boundary Layer’,J. Atmos. Sci. 31, 1308–1323.Google Scholar
  91. Priestley, C.H.B.: 1962, ‘Width-Height Ratio of Large Convection Cells’,Tellus 14, 123–124.Google Scholar
  92. Puhakka, T., and Saarikivi, P.: 1986, ‘Doppler Radar Observations on Horizontal Roll Vortices in Finnland’,Geophysica 22, 101–118.Google Scholar
  93. Raasch, S.: 1988, ‘Numerische Simulation zur Entwicklung von Wirbelrollen und konvektiver Grenzschicht bei Kaltluftausbrüchen über dem Meer’,Ph D. Thesis, Dept. of Physics University of Hannover, 154 pp.Google Scholar
  94. Raasch, S.: 1990 a, ‘Numerical Simulation of the Development of the Convective Boundary Layer During a Cold Air Outbreak’,Boundary Layer Meteorol. 52, 349–375.Google Scholar
  95. Raasch, S.: 1990 b, ‘Two Numerical Studies of Horizontal Roll Vortices in Near-Neutral Inversion Capped Planetary Boundary Layers’,Beitr. Phys. Atmosph. 63, 205–227.Google Scholar
  96. Raasch, S. and Etling, D.: 1991, ‘Numerical Simulation of Rotating Turbulent Thermal Convection’,Beitr. Phys. Atmosph. 64, 185–199.Google Scholar
  97. Rabin, R.M., Doviak, R.J. and Sundara-Rajan, A.: 1982, ‘Doppler Radar Observations of Momentum Flux in a Cloudless Convective Layer with Rolls’,J. Atmos. Sci. 39, 851–863.Google Scholar
  98. Ray, D.: 1986, ‘Variable Eddy Diffusivities and Atmospheric Cellular Convection’,Boundary-Layer Meteorol. 30, 117–131.Google Scholar
  99. Reinking, R.F., Doviak, R.J. and Gilmer, R.O.: 1981, ‘Clear-Air Roll Vortices and Turbulent Motions as Detected with an Airborne Gust Probe and Dual-Doppler Radar’,J. Appl. Meteorol. 20, 678–685.Google Scholar
  100. Robinson, S.K.: 1991, ‘Coherent Motions in the Turbulent Boundary Layer’,Ann. Rev. Fluid Mech. 23, 601–640.Google Scholar
  101. Rothermal, J. and Agee, E.M.: 1986, ‘A Numerical Study of Atmospheric Convective Scaling’,J. Atmos. Sci. 43, 1185.Google Scholar
  102. Schumann, U. and Friedrich, R.: 1986, ‘Direct and Large Eddy Simulation of Turbulence’, Vieweg, Braunschweig, 340 ppGoogle Scholar
  103. Sang, J.G.: 1991, ‘On Formation of Convective Roll Vortices Internal Gravity Waves: A Theoretical Study’,Meteorol. Atmos. Phys. 46, 15–28.Google Scholar
  104. Schmidt, H. and Schumann, U.: 1989, ‘Coherent Structure of the Convective Boundary Layer Derived from Large-Eddy Simulations’,J. Fluid Mech. 200, 511–562.Google Scholar
  105. Schols, J.L.J.: 1984, ‘The Detection and Measurement of Turbulent Structures in the Atmospheric Surface Layer’,Boundary-Layer Meteorol. 29, 39–58.Google Scholar
  106. Schols, J.L.J., Jansen, A.E. and Krom, J.G.: 1985, ‘Characteristics of Turbulent Structures in the Unstable ASL’,Boundary-Layer Meteorol. 33, 173–196.Google Scholar
  107. Scorer, R.S.: 1986, ‘Cloud Investigation by Satellite’, Ellis Horwood, Chichester, 300 pp.Google Scholar
  108. Scorer, R.S.: 1990, ‘Satellite as Microscope’, Ellis Horwood, Chichester, 286 pp.Google Scholar
  109. Sheu, P.J., Agee, E.M. and Tribia, J.J.: 1980, ‘A Numerical Study of Physical, Processes Affecting Convective Cellular Geometry’,J. Meteorol. Soc. Japan 58, 489–498.Google Scholar
  110. Shirer, H.N.: 1986, ‘On Cloud Street Development in Three Dimensions: Parallel and Rayleigh Instabilities’,Beitr. Phys. Atmosph. 59, 126–149.Google Scholar
  111. Shirer, H.N. and Brümmer, B.: 1986, ‘Cloud Streets During KonTur. A Comparison of Parallel/Thermal Instability Modes With Observations’,Beitr. Phys. Atmosph. 59, 150–161.Google Scholar
  112. Smedman, A.S.: 1991, ‘Occurrence of Roll Circulations in a Shallow Boundary Layer’,Boundary-Layer Meteorol. 57, 343–358.Google Scholar
  113. Stensrud, D.J., and Shirer, H.N.: 1988, ‘Development of Boundary Layer Rolls from Dynamic Instabilities’,J. Atmos. Sci. 45, 1007–1019.Google Scholar
  114. Streten, N.A.: 1975, ‘Cloud Cell Size and Pattern Evolution in Arctic Air Advection over the North Pacific’,Arch. Met. Geophys. Biokl. A24, 213–228.Google Scholar
  115. Stull, R.B.: 1991, ‘A Comparison of Parameterized vs. Measured Transilient Mixing Coefficients for a Convective Mixed Layer’,Boundary-Layer-Meteorol.,55, 67–90.Google Scholar
  116. Sykes, R.I., Lewellen, W.S. and Henn, D.S.: 1988, ‘A Numerical Study of the Development of Cloud-Street Spacing’,J. Atmos. Sci. 45, 2556–2569.Google Scholar
  117. Sykes, R.I., Lewellen, W.S. and Henn, D.S.: 1990, ‘Numerical Simulation of the Boundary Layer Structure during Cold Air Outbreak of GALE IOP-2’,Mon. Wea. Rev. 118, 363–374.Google Scholar
  118. Thomson, T.W., Liu, W.T. and Weissman, D.E.: 1983, ‘Synthetic Aperture Radar Observation of Ocean Roughness from Rolls in an Unstable Marine Boundary Layer’,Geophys. Res. Let. 12, 1172–1175.Google Scholar
  119. Thorpe, S.A.: 1992, ‘The Breakup of Langmuir Circulation and the Instability of an Array of Vortices’,J. Phys. Oceanogr. 22, 350–360.Google Scholar
  120. Troen and Mahrt, L.: 1986, ‘A Simple Boundary-Layer Model and its Sensitivity to Surface Evaporation’,Boundary-Layer-Meteorol. 37, 107–128.Google Scholar
  121. van Delden, A.: 1985, ‘Convection in Polar Outbreaks and related Phenomena’,Proc. Workshop. Institute of Meteorology and Oceanography, University of Utrecht, Netherlands, 163 pp.Google Scholar
  122. van Delden, A. and Oerlemans, J.: 1982, ‘Grouping of Clouds in a Numerical Cumulus Convection Model’,Beitr. Phys. Atmosph. 55, 239–252.Google Scholar
  123. Walter, B.A.: 1980, ‘Wintertime Observations of Roll Clouds over the Bering Sea’,Mon. Wea. Rev. 108, 2024–2031.Google Scholar
  124. Walter, B.A.: 1986, ‘The Mesoscale Organization, Dynamics and Evolution of the Marine Planetary Boundary Layer during Cold Air Outbreaks’,Ph. D. Thesis Dept. Atmosph. Sciences, University of Washington, Seattle pp 200.Google Scholar
  125. Walter, B.A. and Overland, J.E.: 1984, ‘Observations of Longitudinal Rolls in a Near Neutral Atmosphere’,Mon. Wea. Rev. 112, 200–208.Google Scholar
  126. Weston, K.J.: 1980, ‘An Observational Study of Convective Cloud Streets’,Tellus 32, 433–438.Google Scholar
  127. Weil, J.C.: 1990, ‘A Diagnostis of the Asymmetry in Top-Down and Bottom-Up Diffusion using a Lagrangian Stochastic Model’,J. Atmos. Sci. 47, 501–515.Google Scholar
  128. Wilczak, J.M. and Businger, J.A.: 1984, ‘Large Scale Eddies in the Unstably Stratified Atmospheric Surface Layer. Part 1 (Wilczak): Velocity and Temperature Structure. Part 2 (Wilczak and Businger): Turbulent Pressure Fluctuations and the Budgets of Heat Flux, Stress and T.K.E.’,J. Atmos. Sci. 41, 3537–3567.Google Scholar
  129. Wilczak, J.M. and Tillman, J.E.: 1980, ‘The Three-Dimensional Structure of Convection in the Atmospheric Surface Layer’,J. Atmos. Sci. 37, 2424–2443.Google Scholar
  130. Williams, A.G. and Hacker, J.M.: 1992, ‘The Composite Shape and Structure of Coherent Eddies in the Convective Boundary Layer’,Boundary-Layer Meteorol. 61, 213–245.Google Scholar
  131. Wippermann, F., Etling, D. and Kirstein, H.J.: 1978, ‘On the Instability of a Planetary Boundary Layer with Rossby-Number Similarity. Part II: The Combined Effect of Inflection Point Instability and Convective Instability’Boundary-Layer Meteorol. 15, 301–321.Google Scholar
  132. Wyngaard, J.C. and Brost, R.A.: 1984, ‘Top-Down and Bottom-Up Diffusion of a Scalar in the Convective Boundary Layer’,J. Atmos. Sci. 41, 102–112.Google Scholar
  133. Young, G.S.: 1988, ‘Turbulence Structure of the Convective Boundary Layer. Part II: Phoenix 78 Aircraft Observations of Thermals and Their Environment’,J. Atmos. Sci. 45, 727–735.Google Scholar
  134. Zivkovic, M. and Agee, E.M.: 1988, ‘Further Aspects of Transitions in Two-Dimensional Thermal Convection’,J. Atmos. Sci. 45, 3983–3995.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • D. Etling
    • 1
  • R. A. Brown
    • 2
  1. 1.Institut für Meteorologie und KlimatologieUniversität HannoverHannover 21Germany
  2. 2.Dept. of Atmospheric SciencesUniversity of WashingtonSeattleUSA

Personalised recommendations