Boundary-Layer Meteorology

, Volume 67, Issue 1–2, pp 97–118 | Cite as

Design criteria for water tank models of dispersion in the planetary convective boundary layer

  • M. F. Hibberd
  • B. L. Sawford


Design criteria for laboratory water-analogs of clear-air penetrative convection in the atmosphere are described. Consideration is given to the range of factors relevant to modelling both turbulent penetrative convection and the dispersion of buoyant point-source plumes within the convective boundary layer. Scaling arguments based on mixed-layer and plume scaling show that at typical laboratory scales, saline convection can satisfy the requirements for modelling buoyant plume dispersion under strongly convective (light wind) conditions better than heated water tanks or wind tunnels.


Convection Boundary Layer Wind Tunnel Design Criterion Laboratory Scale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adrian, R. J., Ferreira, R. T. D. S., and Boberg, T.: 1986. ‘Turbulent Thermal Convection in Wide Horizontal Fluid Layers’,Experiments in Fluids 4, 121–141.Google Scholar
  2. Arya, S. P. S.: 1982, ‘Atmospheric Boundary Layers over Homogeneous Terrain’, in E. Plate (ed.),Engineering Meteorology, Elsevier, Amsterdam, pp. 233–267.Google Scholar
  3. Arya, S. P. S. and Lape, J. F. Jr.: 1990, ‘A Comparative Study of the Different Criteria for the Physical Modeling of Buoyant Plume Rise in a Neutral Atmosphere’,Atmos. Environ. 24A, 289–295.Google Scholar
  4. Carson, D. J.: 1973, ‘The Development of a Dry Inversion-Capped Convectively Unstable Boundary Layer’,Quart. J. Roy. Meteorol. Soc. 99, 450–467.Google Scholar
  5. Caughey, S. J.: 1982, ‘Observed Characteristics of the Atmospheric Boundary Layer’, in F. T. M. Nieuwstadt and H. van Dop (eds.),Atmospheric Turbulence and Air Pollution Modelling, Reidel, pp. 107–158.Google Scholar
  6. Caughey, S. J. and Palmer, S. G.: 1979. ‘Some Aspects of Turbulence Structure Through the Depth of the Convective Boundary Layer’,Quart. J. R. Meteorol. Soc. 105, 811–827.Google Scholar
  7. Cenedese, A. and Querzoli, G.: 1991, ‘A Laboratory Model of Turbulent Convection in the Atmospheric Boundary Layer’,Fifth International Workshop on Wind and Water Tunnel Modelling of Atmospheric Flow and Dispersion, 30 Oct–1 Nov, Stevenage, UK.Google Scholar
  8. Deardorff, J. W.: 1970, ‘Convective Velocity and Temperature Scales for the Unstable Planetary Boundary Layer and for Rayleigh Convection’,J. Atmos. Sci. 27, 1211–1213.Google Scholar
  9. Deardorff, J. W.: 1979, ‘Prediction of Convective Mixed-Layer Entrainment for Realistic Capping Inversion Structure’,J. Atmos. Sci. 36, 424–436.Google Scholar
  10. Deardorff, J. W. and Willis, G. E.: 1967, ‘Investigation of Turbulent Thermal Convection Between Horizontal Plates’,J. Fluid Mech. 28, 675–704.Google Scholar
  11. Deardorff, J. W. and Willis, G. E.: 1974, ‘Computer and Laboratory Modeling of the Vertical Diffusion of Nonbuoyant Particles in the Mixed Layer’,Adv. Geophys. 18B, 187–200.Google Scholar
  12. Deardorff, J. W. and Willis, G. E.: 1975, ‘A Parameterization of Diffusion into the Mixed Layer’,J. Appl. Meteorol. 14, 1451–1458.Google Scholar
  13. Deardorff, J. W. and Willis, G. E.: 1984, ‘Groundlevel Concentration Fluctuations from a Buoyant and a Non-buoyant Source within a Laboratory Convectively Mixed Layer’,Atmos. Environ. 18, 1297–1309. See also discussion inAtmos. Environ. 19 (1985), 1210–1213.Google Scholar
  14. Deardorff, J. W. and Willis, G. E.: 1985, ‘Further Results From a Laboratory Model of the Convective Planetary Boundary Layer’,Boundary-Layer Meteorol. 32, 205–236.Google Scholar
  15. Deardorff J. W., Willis, G. E. and Lilly, D. K.: 1969, ‘Laboratory Investigation of Non-steady Penetrative Convection’,J. Fluid Mech. 35, 7–31.Google Scholar
  16. Deardorff, J. W., Willis, G. E. and Stockton, B. H.: 1980, ‘Laboratory Studies of the Entrainment Zone of a Convectively Mixed Layer’,J. Fluid Mech. 100, 41–64.Google Scholar
  17. Dörnbrack, A. and Schumann, U.: 1992, ‘Numerical Simulation of Turbulent Convective Shear Flow over Wavy Terrain’,Tenth Symposium on Turbulence and Diffusion, 29 Sep–2 Oct, Portland, Oregon, J76–J79.Google Scholar
  18. Fitzjarrald, D. E.: 1978, ‘Horizontal Scales of Motion in Atmospheric Free Convection Observed during the GATE Experiment’,J. Appl. Meteorol. 17, 213–221.Google Scholar
  19. Garratt, J. R., Wyngaard, J. C. and Francey, R. J.: 1982, ‘Winds in the Atmospheric Boundary Layer-Prediction and Observation’,J. Atmos. Sci. 39, 1307–1316.Google Scholar
  20. Globe, S. and Dropkin, D.: 1959, ‘Natural-Convection Heat Transfer in Liquids Confined by Two Horizontal Plates and Heated from Below’,Trans. ASME, J. Heat Transfer 81, 24–28.Google Scholar
  21. Goldstein, R. J., Chaing, H. D. and See, D. L.: 1990, ‘High-Rayleigh-Number Convection in a Horizontal Enclosure’,J. Fluid Mech. 213, 111–126.Google Scholar
  22. Hadfield, M. G., Cotton, W. R. and Pielke, R. A.: 1991, ‘Large-Eddy Simulations of Thermally Forced Circulations in the Convective Boundary Layer. Part II: The Effects of Changes in Wavelength and Wind Speed’,Boundary-Layer Meteorol. 58, 307–327.Google Scholar
  23. Hicks, B. B.: 1985, ‘Behavior of Turbulence Statistics in the Convective Boundary Layer’,J. Clim. Appl. Meteorol. 24, 607–614.Google Scholar
  24. Hinze, J. O.: 1975,Turbulence, McGraw-Hill, 2nd edn., p. 225.Google Scholar
  25. Hoult, D. P. and Weil J. C.: 1972, ‘Turbulent Plume in a Laminar Cross Flow’,Atmos. Environ. 6, 513–531.Google Scholar
  26. Kantha, L. H.: 1979, ‘Turbulent Entrainment at a Buoyancy Interface Due to Convective Turbulence’,NATO Conference on Fjord Oceanography, 205–213.Google Scholar
  27. Kantha, L. H. and Long, R. R.: 1980, ‘Turbulent Mixing with Stabilizing Surface Buoyancy Flux’,Phys. Fluids 23, 2142–2143.Google Scholar
  28. Krishnamurti, R.: 1973, ‘Some Further Studies on the Transition to Turbulent Convection’,J. Fluid Mech. 60, 285–303.Google Scholar
  29. Kumar, R. and Adrian, R. J.: 1986, ‘Higher Order Moments in the Entrainment Zone of Turbulent Penetrative Thermal Convection’,Trans. ASME, J. Heat Transfer 108, 323–329.Google Scholar
  30. Lenschow, D. H. and Stankov, B. B.: 1986, ‘Length Scales in the Convective Boundary Layer’,J. Atmos. Sci. 43, 1198–1209.Google Scholar
  31. Melbourne, W. H., Taylor, T. J. and Grainger, C. F.: 1993, ‘Dispersion Modelling in Convective Wind Flows’,Atmos. Environ. (submitted).Google Scholar
  32. Meroney, R. N. and Melbourne, W. H.: 1992, ‘Operating Ranges of Meteorological Wind Tunnels for the Simulation of Convective Boundary Layer (CBL) Phenomena’,Boundary-Layer Meteorol. 61, 145–174.Google Scholar
  33. Ohba, R., Kakishima, S. and Ito, S.: 1991, ‘Water Tank Experiment of Gas Diffusion From a Stack in Stably and Unstably Stratified Layers Under Calm Conditions’,Atmos. Environ. 25A, 2063–2076.Google Scholar
  34. Paulson, C. A.: 1970, ‘The Mathematical Representation of Wind Speed and Temperature Profiles in the Unstable Atmospheric Surface Layer’,J. Appl. Meteorol. 9, 857–861.Google Scholar
  35. Poreh, M. and Cermak, J. E.: 1984, ‘Wind Tunnel Simulation of Diffusion in a Convective Boundary Layer’,Boundary-Layer Meteorol.,30, 431–455.Google Scholar
  36. Poreh, M., Rau, M. and Plate, E. J.: 1991, ‘Design Considerations for Wind Tunnel Simulations of Diffusion within the Convective Boundary Layer’,Atmos. Environ. 25A, 1251–1256.Google Scholar
  37. Snyder, W. H.: 1972, ‘Similarity Criteria for the Application of Fluid Models to the Study of Air Pollution Meteorology’,Boundary-Layer Meteorol. 3, 113–134.Google Scholar
  38. Snyder, W. H.: 1981,Guideline for Fluid Modeling of Atmospheric Diffusion, EPA Report 600/8-81-009, US Environmental Protection Agency, Research Triangle Park, NC.Google Scholar
  39. Stull, R. B.: 1988,An Introduction to Boundary Layer Meteorology, Kluwer, Dordrecht, p. 455.Google Scholar
  40. Weil, J. C.: 1988, ‘Dispersion in the Convective Boundary Layer’, in A. Venkatram and J. C. Wyngaard (eds.),Lectures on Air Pollution Modeling, Am. Meteorol. Soc., Boston, 167–227.Google Scholar
  41. Willis, G. E. and Deardorff, J. W.: 1974, ‘A Laboratory Model of the Unstable Planetary Boundary Layer’,J. Atmos. Sci. 31, 1297–1307.Google Scholar
  42. Willis, G. E. and Deardorff, J. W.: 1976, ‘On the Use of Taylor's Translation Hypothesis for Diffusion in the Mixed Layer’,Quart. J. Roy. Meteorol. Soc. 102, 817–822.Google Scholar
  43. Willis, G. E. and Deardorff, J. W.: 1981, ‘A Laboratory Study of Dispersion from a Source in the Middle of the Convectively Mixed Layer’,Atmos. Environ. 15, 109–117.Google Scholar
  44. Willis, G. E. and Deardorff, J. W.: 1983, ‘On Plume Rise Within a Convective Boundary Layer’,Atmos. Environ. 17, 2435–2447. See also discussion inAtmos. Environ. 19 (1985), 1210–1213.Google Scholar
  45. Willis, G. E. and Deardorff, J. W.: 1987, ‘Buoyant Plume Dispersion and Inversion Entrapment In and Above a Laboratory Mixed Layer’,Atmos. Environ. 21, 1725–1735.Google Scholar
  46. Zilitinkevich, S. S.: 1991,Turbulent Penetrative Convection, Avebury Technical, Aldershot, U.K.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • M. F. Hibberd
    • 1
  • B. L. Sawford
    • 1
  1. 1.CSIRO Division of Atmospheric ResearchAspendaleAustralia

Personalised recommendations