Advertisement

Microhardness and Young's modulus in cortical bone exhibiting a wide range of mineral volume fractions, and in a bone analogue

  • G. P. Evans
  • J. C. Behiri
  • J. D. Currey
  • W. Bonfield
Article

Abstract

The relationships between microhardness and mineral content and microhardness and Young's modulus have been determined for cortical bone exhibiting a wide range of mineral volume fractions. These relationships have also been determined for a hydroxyapatite reinforced polyethylene composite which is considered to be an analogue material for bone. Strong nonlinear relationships were found between the variables for both materials. For a given volume fraction of mineral the hardness of the natural bone tissue was found to be considerably higher than that of the analogue material. This was attributed to the different ways in which the mineral phase is bound to the matrix in the two materials. The relationship between microhardness and Young's modulus was similar for both materials. The strength of the relationships found suggest that microhardness data is a viable means of estimating the Young's modulus of specimens that do not easily lend themselves to convential testing procedures.

Keywords

Polymer Polyethylene Hydroxyapatite Testing Procedure Bone Tissue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. BUCKLE,Metall. Rev. 4 (1959) 49.Google Scholar
  2. 2.
    E. C. ROLLASON, “Metallurgy for Engineers”, 4th Edn (Edward Arnold, London, 1973).Google Scholar
  3. 3.
    R. RÖSSLE,Beitr. Path. Anat. 77 (1927) 174.Google Scholar
  4. 4.
    D. CARLSTRÖM,Experientia 10 (1954) 171.Google Scholar
  5. 5.
    M. D. WEAVER,J. Bone and Jt Surgery 48A (1966) 273.Google Scholar
  6. 6.
    G. LENART, I. TOTH and J. PINTER,Acta Biochem. Biophys. Acad. Sci. Hungary 3 (1968) 205.Google Scholar
  7. 7.
    A. PIZZOFERATOet al., in “Ceramics in Surgery”, edited by P. Vincenzini (Elsevier Scientific Publishing, Amsterdam, 1983) p. 149.Google Scholar
  8. 8.
    M. SZILAGYI, A. B. KOVACS and I. PALFALVI,Acta. Vet. Acad. Sci. Hungary 28 (1980) 455.Google Scholar
  9. 9.
    G. MAROTTIet al., Calc. Tiss. Res. 10 (1972) 67–81.Google Scholar
  10. 10.
    F. G. EVANS, “Mcchanical properties of bone” (Charles Thomas, Springfield, Illinois, 1973).Google Scholar
  11. 11.
    R. AMPRINO,Acta Anat. 34 (1958) 161.Google Scholar
  12. 12.
    J. M. DORLOT, G. L. ESPERANCE and A. MEUNIER, in Proceedings of the 5th European Conference on Biomaterials, Paris, (1985), p. 118.Google Scholar
  13. 13.
    S. LEES,J. Biomechanics 14 (1976) 561.Google Scholar
  14. 14.
    W. BONFIELDet al., in “Biomaterials and Biomechanics”, edited by P. Ducheyne, G. Van der Perre and A. E. Aubert (Elsevier, Amsterdam, 1983) p. 421.Google Scholar
  15. 15.
    M. RAMRAKHIANI, D. PAL and T. S. MURTY,Acta Anat. 103 (1979) 358.Google Scholar
  16. 16.
    M. JARCIIOet al., J. Mater. Sci. 11 (1976) 2027.Google Scholar
  17. 17.
    J. D. CURREY,J. Biomechanics 21 (1988) 131.Google Scholar
  18. 18.
    E. D. SEDLIN and C. HIRSCH,Acta. Orthop. Scand. 37 (1966) 29.Google Scholar
  19. 19.
    W. BONFIELD and P. O'CONNOR,J. Mater. Sci. 13 (1978) 202.Google Scholar
  20. 20.
    Z. U. HAQUE and D. T. TURNER,J. Mater. Sci. 22 (1987) 3379.Google Scholar
  21. 21.
    A. A. MARINO and R. O. BECKER,Nature 213 (1967) 697.Google Scholar
  22. 22.
    E. P. KATZ and S. T. LI,J. Molec. Biol. 80 (1973) 1.Google Scholar
  23. 23.
    S. W. WHITEet al., Nature 266 (1973) 421.Google Scholar
  24. 24.
    C. W. McCUTCHEN,J. Theor. Biol. 51 (1975) 51.Google Scholar
  25. 25.
    B. CHARALAMBIDES, Ph. D. Thesis, Queen Mary College, London (1988).Google Scholar
  26. 26.
    K. FRIEDRICH and U. A. KARSCH,J. Mater. Sci. 16 (1981) 2167.Google Scholar
  27. 27.
    A. KELLY, “Strong Solids” (Clarendon Press, Oxford, 1973).Google Scholar
  28. 28.
    W. BONFIELDet al., in “Biomechanics: Basic and Applied Research”, edited by G. Bergmann, R. Kölbel and A. Rohlmann (Martinus Nijhoff, Dordrecht, 1987) p.213.Google Scholar

Copyright information

© Chapman and Hall Ltd 1990

Authors and Affiliations

  • G. P. Evans
    • 1
  • J. C. Behiri
    • 1
  • J. D. Currey
    • 2
  • W. Bonfield
    • 1
  1. 1.Department of MaterialsQueen Mary and Westfield CollegeLondonUK
  2. 2.Department of BiologyUniversity of YorkYorkUK

Personalised recommendations