Advertisement

Caffeine increases maximal anaerobic power and blood lactate concentration

  • F. Anselme
  • K. Collomp
  • B. Mercier
  • S. Ahmaïdi
  • Ch. Prefaut
Article

Summary

The aim of this study was to specify the effects of caffeine on maximal anaerobic power (Wmax). A group of 14 subjects ingested caffeine (250 mg) or placebo in random double-blind order. TheWmax was determined using a force-velocity exercise test. In addition, we measured blood lactate concentration for each load at the end of pedalling and after 5 min of recovery. We observed that caffeine increasedWmax [964 (SEM 65.77) W with caffeine vs 903.7 (SEM 52.62) W with placebo;P<0.02] and blood lactate concentration both at the end of pedalling [8.36 (SEM 0.95) mmol · l−1 with caffeine vs 7.17 (SEM 0.53) mmol · l−1 with placebo;P<0.011 and after 5 min of recovery [10.23 (SEM 0.97) mmol · l−1 with caffeine vs 8.35 (SEM 0.66) mmol · l−1 with placebo;P<0.04]. The quotient lactate concentration/power (mmol · l−1 · W−1) also increased with caffeine at the end of pedalling [7.6 · 10−3 (SEM 3.82 · 10−5) vs 6.85 · 10−3 (SEM 3.01 · 10−5);P<0.01] and after 5 min of recovery [9.82·10−3 (SEM 4.28 · 10−5) vs 8.84 · 10−3 (SEM 3.58 · 10−5);P<0.02]. We concluded that caffeine increased bothWmax and blood lactate concentration.

Key words

Force-velocity exercise test Maximal anaerobic power Caffeine Lactate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alles G, Feigen G (1942) The influence of benzedrine on work decrement and patellar reflex. Am J Physiol 126:392–400Google Scholar
  2. Asmussen E, Boje O (1948) The effect of alcohol and some drugs on capacity for work. Acta Phys Scand 15:109–113Google Scholar
  3. Astrup A, Toubro S, Cannon S, Hein P, Breum L, Madsen J (1990) Caffeine: a double-blind, placebo-controlled study of its thermogenic, metabolic, and cardiovascular effects in healthy volunteers. Am J Clin Nutr 51:759–767Google Scholar
  4. Bellet S, Kerschbaum A, Aspe J (1965) The effects of caffeine on free fatty acids. Arch Intern Med 116:750–752Google Scholar
  5. Berglund B, Hemmingsson P (1982) Effects of caffeine ingestion on exercise performance at low and high altitudes in cross country skiers. Int J Sports Med 3:234–236Google Scholar
  6. Bertocci L, Gollnick PD (1985) pH effect on mitochondria and individual enzyme function. Med Sci Sports Exerc 17:244–249Google Scholar
  7. Carbo M, Segura J, De La Torre R (1989) La caféine, données de base et facteurs capables de les modifier. Sci Sport 4:7–13Google Scholar
  8. Collomp K, Anselme F, Audran M, Gay JP, Chanal JL, Préfaut C (1991) Effects of moderate exercise on the pharmacokinetics of caffeine. Eur J Clin Pharmacol 40:279–282Google Scholar
  9. Collomp K, Ahmaidi S, Audran M, Chanal JL, Préfaut C Effects of caffeine ingestion on performance and anaerobic metabolism during the Wingate test. Int J Sports MedGoogle Scholar
  10. Costill DL, Dalsy GP, Fink WJ (1978) Effects of caffeine ingestion on metabolism and exercise performance. Med Sci Sports 10:155–158Google Scholar
  11. Crescitelli F, Taylor C (1944) The lactate response to exercise and its relationship to physical fitness. Am J Physiol 141:630–640Google Scholar
  12. Di Prampero PE (1981) Energetics of muscular exercise. Rev Physiol Biochem Pharmacol 89:143–222Google Scholar
  13. Di Prampero PE, Meyer M, Ceretelli P, Piiper J (1981) Energy sources and mechanical efficiency of anaerobic work in dog gastrocnemius. Pflügers Arch 389:257–262Google Scholar
  14. Essig D, Costill DL, Von Handel PJ (1980) Effects of caffeine ingestion on utilization of muscle glycogen and lipid during leg ergometer cycling. Int J Sports Med 1:86–90Google Scholar
  15. Falk B, Burstein R, Ashkenazi I, Spilberg O, Alter J, Zylber-Katz E, Rubinstein A, Bashan N, Shapiro Y (1989) The effect of caffeine on physical performance after prolonged exercise. Eur J Appl Physiol 59:168–173Google Scholar
  16. Fisher EH, Heilmayer LMG, Hascke RH (1971) Phosphorylase and the control of glycogen degradation. Curr Top Cell Regul 4:211–251Google Scholar
  17. Foltz E, Ivy A, Barborka C (1943) The influence of amphetamine (Benzedrine) sulfate, D-desoryiephedrine hydrochloride (Pervitan), and caffeine upon work output and recovery when rapidly exhausting work is done by trained subjects. J Lab Clin Med 28:603–606Google Scholar
  18. Fujino M, Fujino S (1964) Die Beziehung zwischen Coffein Kontraktur und Calcium am Froschskelettmuskel. Arch Ges Physiol 278:478–484Google Scholar
  19. Issekutz BJR (1984) Effect of β-adrenergic blockade on lactate turnover in exercising dogs. J Appl Physiol 57:1754–1759Google Scholar
  20. Ivy JL, Costill DL, Fink WJ, Lower RW (1979) Influence of caffeine and carbohydrate feedings on endurance performance. Med Sci Sports 11:6–11Google Scholar
  21. Kavaler F, Anderson T, Fister V (1978) Sarcolemmal site of caffeine's inotropic action on ventricular muscle of the frog. Circ Res 42:285–290Google Scholar
  22. Lopes JM, Jardim AJ, Aranda JV, Macklem PT (1983) Effect of caffeine on skeletal muscle function before and after fatigue. J Appl Physiol 54:1303–1305Google Scholar
  23. MacIntosh BR, Barbee RW, Stainsby WN (1981) Contractile response to caffeine of rested and fatigued skeletal muscle. Med Sci Sports 13:95–99Google Scholar
  24. Margaria R, Cerretelli P, Di Prampero PE, Massari C, Torelli G (1963) Kinetics and mechanism of oxygen debt contraction in man. J Appl Physiol 18:371–377Google Scholar
  25. Mercier J, Mercier B, Prefaut Ch (1991) Blood lactate increase during the force velocity exercise test. Int J Sports Med 12:17–20Google Scholar
  26. Powers SK, Dodd S (1985) Caffeine and endurance performance. Sports Med 2:165–174Google Scholar
  27. Rennie M, Winder WW, Halloszy IO (1976) A sparing effect of increased free fatty acids on muscle glycogen content in exercising rats. Biochem J 156:647–655Google Scholar
  28. Robertson D, Frolich JC, Carr RK, Watson JT, Hollifield JW, Shand DG, Oates JA (1978) Effects of caffeine on plasma renine activity, catecholamines and blood pressure. N Engl J Med 298:181–186Google Scholar
  29. Sasaki H, Takaota I, Ishiko T (1987) Effects of sucrose on caffeine ingestion on running performance and biochemical responses to endurance running. Int J Sports Med 3:203–207Google Scholar
  30. Stainsby WN, Summers C, Andrew GM (1984) Plasma catecholamines and their effect on blood lactate and muscle lactate output. J Appl Physiol 57:321–325Google Scholar
  31. Vandewalle H, Peres G, Heller J, Panel J, Monod H (1987) Force-velocity relationships and maximal power on a cycle ergometer. Eur J Appl Physiol 56:650–656Google Scholar
  32. Waldeck B (1973) Sensitization by caffeine of central catecholamine receptors. J Gen Physiol 34:61–72Google Scholar
  33. Weber A (1968) The mechanism of action of caffeine on sarcoplasmic reticulum. J Gen Physiol 52:760–772Google Scholar
  34. Yamaguchi T (1975) Caffeine induced potentiation of twitches in frog single muscle fibers. Jpn J Physiol 25:693–704Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • F. Anselme
    • 1
  • K. Collomp
    • 1
  • B. Mercier
    • 1
  • S. Ahmaïdi
    • 1
  • Ch. Prefaut
    • 1
  1. 1.Service d'exploration de la fonction respiratoireHôpital AiguelongueMontpellier CedexFrance

Personalised recommendations