Russian Chemical Bulletin

, Volume 42, Issue 4, pp 663–671 | Cite as

Studies of vacuum pyrolysis of 3-sila- and 3-germa-3,3′-spirobi(6-oxabicyclo[3.1.0]hexanes) and low-temperature matrix stabilization of monomeric silicon dioxide from the gas phase

  • S. E. Boganov
  • V. I. Faustov
  • V. N. Khabashesku
  • Z. A. Kerzina
  • N. D. Kagramanov
  • A. A. Kutin
  • O. M. Nefedov
  • P. Mazerolles
  • G. Manuel
Physical Chemistry


Vacuum pyrolysis of 3-sila-3,3′-spirobi(6-oxabicyclo[3.1.0]hexanes) leads to the formation of monomeric silicon dioxide and 1,3-butadienes, whereas under the same conditions 3-germa-3,3′-spirobi(6-oxabicyclo[3.1.0]hexanes) afford germanium monoxide, the corresponding divinyl ethers, and 1,3-butadienes. A multistage mechanism of pyrolytic decomposition of the above spirobicyclohexanes was proposed on the basis of experimental data and calculations. The different behavior of the silicon and germanium compounds having similar structures can be explained by an increase in the bivalent state stability and by a decrease in the energy of the metal-oxygen double bond on the transition from silicon to germanium.

Key words

vacuum pyrolysis matrix IR spectroscopy semiempirical method AM1 1,1′-dimethyl-3,3′-spirobi(3-germa-6-oxabicyclo[3.1.0]hexane) 1,5-dimethyl-3,3′-spirobi(3-germa-6-oxabicyclo[3.1.0]hexane) 1,5-dimethyl-3,3′-spirobi(6-oxa-3-silabicyclo[3.1.0]hexane) silicon dioxide germanium dioxide germanium monoxide isopropenyl vinyl ether divinyl ether 1,3-butadiene 2,3-dimethyl-1,3-butadiene germanone silanone 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Raabe and J. Michl, inThe Chemistry of the Functional Groups: The Chemistry of Organic Silicon Compounds, Eds. S. Patai, Z. Rappoport, Wiley, New York, 1989, Chapter 17.Google Scholar
  2. 2.
    J. Barrau, J. Escudie, and J. Sadge,Chem. Rev., 1990,90, 283.Google Scholar
  3. 3.
    O. M. Nefedov,Pure Appl. Chem., 1991,63, 231.Google Scholar
  4. 4.
    K.-T. Kang, G. Manuel, and W. P. Weber,Chem. Lett., 1986, 1685.Google Scholar
  5. 5.
    M. T. Davidson, A. Fenton, G. Manuel, and G. Bertrand,Organometallics, 1985,4, 1324.Google Scholar
  6. 6.
    G. Manuel, G. Bertrand, W. P. Weber, and S. A. Kazoura,Organomettallics, 1984,3, 1340.Google Scholar
  7. 7.
    P. Mazerolles and F. Gregoire,J. Organomet. Chem., 1986,301, 153.Google Scholar
  8. 8.
    P. Mazerolles and F. Gregoire,Synth. React. Inorg., Metal org. Chem., 1986,16, 905.Google Scholar
  9. 9.
    G. Henry, R. Bau, G. Manuel, and W. P. Weber,Organomettallics, 1986,5, 1818.Google Scholar
  10. 10.
    C. D. Juengst, W. P. Weber, and G. Manuel,J. Organomet. Chem., 1986,308, 187.Google Scholar
  11. 11.
    J. J. P. Stewart,MOPAC, a Semi-Empirical Molecular Orbital Program, QCPE, 1983, 455.Google Scholar
  12. 12.
    M. J. S. Dewar and C. H. Reynolds,J. Comput. Chem., 1986,7, 140.Google Scholar
  13. 13.
    M. J. S. Dewar and C. X. Jie,Organometallics, 1987,6, 1486.Google Scholar
  14. 14.
    M. J. S. Dewar and C. X. Jie,Organometallics, 1989,8, 1544.Google Scholar
  15. 15.
    R. Damrauer, A. Laporterie, G. Manuel, Y. T. Park, R. Simon, and W. P. Weber,J. Organomet. Chem., 1990,391, 7.Google Scholar
  16. 16.
    Y. T. Park, S. Q. Zhou, D. Zhao, G. Manuel, R. Bau, and W. P. Weber,Organometallics, 1990,9, 2811.Google Scholar
  17. 17.
    E. Taskinen,J. Org. Chem., 1978,43, 2776.Google Scholar
  18. 18.
    E. Taskinen and R. Virtanen,J. Org. Chem., 1977,42, 1443.Google Scholar
  19. 19.
    T.-A. Ishibashi, Y. Furukawa, and M. Tasumi,Nippon Kagaku Kaishi, 1989, 1418.Google Scholar
  20. 20.
    A. Bos, J. S. Ogden, and L. Orgee,J. Phys. Chem., 1974,78, 1763.Google Scholar
  21. 21.
    J. S. Ogden and M. J. Ricks,J. Chem. Phys., 1970,52, 352.Google Scholar
  22. 22.
    P. Huber-Walchli and H. H. Guenthards,Spectrochim. Acta, 1981,37A, 285.Google Scholar
  23. 23.
    M. E. Squillacote, T. C. Semple, and P. W. Mui,J. Am. Chem. Soc., 1985,107, 6842.Google Scholar
  24. 24.
    H. Frei and G. C. Pimentel.Ann. Rev. Phys. Chem., 1985,36, 491.Google Scholar
  25. 25.
    B. Cadioli, B. Fortunato, E. Gallinella, P. Mirone, and U. Pincelli,Gazz. Chim. Ital., 1974,104, 369.Google Scholar
  26. 26.
    H. Schnoeckel,Z. Anorg. Allg. Chem., 1980,460, 37.Google Scholar
  27. 27.
    I. M. T. Davidson, A. Fenton, G. Manuel, and G. Bertrand,Organometallics, 1985,4, 1324.Google Scholar
  28. 28.
    W. Adam, A. Berkessel, and S. Krimm,J. Am. Chem. Soc., 1986,108, 4556.Google Scholar
  29. 29.
    R. H. Lamoreaux, D. L. Hildenbrand, and L. Brewer,J. Phys. Chem. Ref. Data, 1987,16, 419.Google Scholar
  30. 30.
    S. G. Lias, J. E. Bartmess, J. F. Liebman, J. L. Holmes, R. D. Levin, and W. G. Mallard,J. Phys. Chem. Ref. Data, 1988,17, Suppl.1., 3.Google Scholar
  31. 31.
    R. Walsh,Organometallics, 1989,8, 1973.Google Scholar
  32. 32.
    H. E. O'Neal, M. A. Ring, W. H. Richardson, and G. F. Licciard,Organometallics, 1989,8, 1968.Google Scholar
  33. 33.
    M. Kh. Karapet'yants and M. L. Karapet'yants,Osnovnye Termodinamicheskie Konstanty Neorganicheskikh i Organicheskikh Veshchestv (Basic Thermodynamic Constants of Inorganic and Organic Compounds), Khimiya, Moscow, 1968 (in Russian).Google Scholar
  34. 34.
    G. Trinquier, M. Pelissier, B. Saint-Roch, and H. Lavayssiere,J. Organomet. Chem., 1981,214, 169.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • S. E. Boganov
    • 1
  • V. I. Faustov
    • 1
  • V. N. Khabashesku
    • 1
  • Z. A. Kerzina
    • 1
  • N. D. Kagramanov
    • 1
  • A. A. Kutin
    • 1
  • O. M. Nefedov
    • 1
  • P. Mazerolles
    • 2
  • G. Manuel
    • 2
  1. 1.N. D. Zelinsky Institute of Organic ChemistryRussian Academy of SciencesMoscowRussian Federation
  2. 2.Laboratory of Organometallic ChemistryPaul-Sabatier UniversityToulouse cedexFrance

Personalised recommendations