Letters in Mathematical Physics

, Volume 23, Issue 2, pp 133–141 | Cite as

Differential calculi on quantum vector spaces with Hecke-type relations

  • John C. Baez


From a vector spaceV equipped with a Yang-Baxter operatorR one may form the r-symmetric algebraSRV=TV/〈vwR(vw)〉, which is a quantum vector space in the sense of Manin, and the associated quantum matrix algebraMRV=T(End(V))/〈fgR(fg)R-1〉. In the case whenR satisfies a Hecke-type identityR2=(1−q)R+q, we construct a differential calculus ΩRV forSRV which agrees with that constructed by Pusz, Woronowicz, Wess, and Zumino whenR is essentially theR-matrix of GLq(n). Elements of ΩRV may be regarded as differential forms on the quantum vector spaceSRV. We show that ΩRV isMRV-covariant in the sense that there is a coaction Φ*: ΩRVMRV ⊗ ΩRV with Φ*d=(1 ⊗ d)Φ* extending the natural coaction Φ:SRVMRVSRV.

AMS subject classifications (1991)

81R50 16O80 16W30 17B37 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baez, J. C.,R-commutative geometry and quantization of Poisson algebras, to appear inAdv. Math. Google Scholar
  2. 2.
    Connes, A., Non-commutative differential geometry,Publ. Math. IHES 62, 257–360 (1985).Google Scholar
  3. 3.
    Drinfeld, V. G., Quantum groups,Proc. Int. Cong. Math., Berkeley (1986), pp. 798–820.Google Scholar
  4. 4.
    Faddeev, L. D., Reshetikhin, N. Y. and Takhtajan, L. A., Quantization of Lie groups and Lie algebras,Leningrad Math. J. 1, 193–225 (1990).Google Scholar
  5. 5.
    Karoubi, M., Homologie cyclique etK théorie,Astérisque 149, 1–147 (1987).Google Scholar
  6. 6.
    Manin, Yu. I.,Quantum Groups and Noncommutative Geometry, Les Publ. du Centre de Récherches Math., Université de Montrèal, Montrèal, 1988.Google Scholar
  7. 7.
    Manin, Yu. I.,Topics in Noncommutative Geometry, Princeton Univ. Press, Princeton, 1991.Google Scholar
  8. 8.
    Pusz, W. and Woronowicz, S. L.,Rep. Math. Phys. 27, 231 (1990).Google Scholar
  9. 9.
    Rieffel, M., Noncommutative tori, a case study of noncommutative differential manifolds, preprint.Google Scholar
  10. 10.
    Segal, I. E., Quantized differential forms,Topology 7, 147–171 (1968).Google Scholar
  11. 11.
    Wess, J. and Zumino, B., Covariant differential calculus on the quantum hyperplane, preprint.Google Scholar
  12. 12.
    Woronowicz, S. L., Twisted SU(2) group. An example of a noncommutative differential calculus,Publ. Res. Inst. Math. Sci. 23, 117–181 (1987).Google Scholar
  13. 13.
    Woronowicz, S. L., Compact matrix pseudogroups,Comm. Math. Phys. 111, 613–665 (1987).Google Scholar
  14. 14.
    Woronowicz, S. L., Differential calculus on compact matrix pseudogroups (quantum groups),Comm. Math. Phys. 122, 125–170 (1989).Google Scholar
  15. 15.
    Zumino, B., Deformation of the quantum mechanical phase space with bosonic or fermionic coordinates, preprint.Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • John C. Baez
    • 1
  1. 1.Department of MathematicsWellesley CollegeWellesleyUSA

Personalised recommendations