Aquatic Geochemistry

, Volume 1, Issue 2, pp 189–230 | Cite as

Bank-derived carbonate sediment transport and dissolution in the Hawaiian Archipelago

  • Christopher L. Sabine
  • Fred T. Mackenzie


This investigation used two approaches to examine the flux of bank-derived carbonate particles and determine the potential influence of benthic carbonate particle dissolution on the carbon chemistry of the waters around the Hawaiian Archipelago. First, the particle flux near several representative carbonate banks in the Hawaiian Archipelago was measured and compared with the flux at a distal site (ALOHA) approximately 100 km north of Oahu, Hawaii. The results of four sediment trap deployments on three carbonate banks in the Hawaiian Archipelago demonstrate that the flux of bank-derived carbonate particles are consistently one to two orders of magnitude higher than the fluxes at the distal station. Furthermore, the mineralogy of the carbonate flux near the banks, which includes very soluble bank-derived aragonite and magnesian calcite particles, is distinctly different from that of the distal fluxes. Second, the chemistry of the waters at each bank station along the archipelago was characterized and compared with the chemistry of the distal waters to determine if differences in the particle flux were reflected in the carbon chemistry. Higher alkalinity and carbonate ion concentrations were observed around all of the banks studied. The saturation state of these waters suggests that the dissolution of some magnesian calcite and aragonite phases could explain the higher alkalinity values. Calculations suggest that the dissolution of benthically-derived aragonite and magnesian calcite may be an important component of the North Pacific alkalinity budget and a potential sink for anthropogenic CO2.

Key words

bank-derived carbonates magnesian calcite sediment trap flux carbon chemistry CO2 sink global change 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agegian C. R. (1985) The biogeochemical ecology ofPorolithon gardineri (Foslie). unpublished Ph.D. thesis, Honolulu, HI, University of Hawaii.Google Scholar
  2. Agegian C. R. and Mackenzie F. T. (1989) Calcareous organisms and sediment mineralogy on a mid-depth bank in the Hawaiian Archipelago.Pac. Sci. 43, 1, 56–66.Google Scholar
  3. Agegian C. R., Mackenzie F. T., Tribble J. S. and Sabine C. L. (1988) Carbonate production and flux from a mid-depth ecosystem, Penguin Bank, Hawaii. InBiogeochemical Cycling and fluxes Between the Deep Euphotic Zone and other Oceanic Realms (ed. C.R. Agegian), pp. 5–32, Washington D. C.Google Scholar
  4. Atkinson M. J. and Grigg R. W. (1984) Model of a coral reef ecosystem: II. Gross and net benthic primary production at French Frigate Shoals, Hawaii.Coral Reefs 3, 13–22.Google Scholar
  5. Berelson W. M., Hammond D. E., McManus J. and Kilgore T. E. (1994) Dissolution kinetics of calcium carbonate in equitorial Pacific sediments.Global Biogeochem. Cycles 8, 219–235.Google Scholar
  6. Berger W. H. (1978) Deep-sea carbonate: pteropod distribution and the aragonite compensation depth.Deep-Sea Res. 25, 447–452.Google Scholar
  7. Berner R. A. (1977) Sedimentation and dissolution of Pteropods in the ocean, InThe Fate of Fossil Fuel CO 2 in the Oceans (ed. N.R. Anderson and A. Malahoff), pp. 243–260, Plenum Press, New York.Google Scholar
  8. Berner R. A., Berner E. K. and Keir R. S. (1976) Aragonite dissolution on the Bermuda pedestal: Its depth and geochemical significance.Earth Planet. Sci. Lett. 30, 169–178.Google Scholar
  9. Berner R. A. and Honjo S. (1981) Pelagic sedimentation of aragonite: Its geochemical significance.Science 211, 940–942.Google Scholar
  10. Bertram M. A., Mackenzie F. T., Bishop F. C. and Bischoff W. D. (1991) Influence of temperature on the stability of magnesian calcite.Amer. Min. 76, 1889–1896.Google Scholar
  11. Betzer P. R., Eggimann D. W., Carder K. L., Kester D. R. and Betzer S. B. (1977) Seasonal patterns in suspended calcium carbonate concentrations during the dry and wet seasons in the Eastern Caribbean. InThe Fate of Fossil Fuel CO 2 in the Oceans (ed. N. R. Anderson and A. Malahoff), pp. 63–79, Plenum Press, New York.Google Scholar
  12. Betzer P. R., Byrne R. H., Acker J. G., Lewis C. S., Jolley R. R. and Feely R. A. (1984a) The oceanic carbonate system: A reassessment of Biogenic Controls.Science 226, 1074–1077.Google Scholar
  13. Betzer P. R., Carder K. L., Duce R. A., Merrill J. T., Tindale N. W., Uematsu M., Costello D. K., Young R. W., Feely R. A., Breland J. A., Bernstein R. E. and Greco A. M. (1988) Long-range transport of giant mineral aerosol particles.Nature 336, 568–571.Google Scholar
  14. Betzer P. R., Showers W. J., Laws E. A., Winn C. D., Ditullio G. R. and Kroopnick P. M. (1984b), Primary productivity and particle fluxes on a transect of the equator at 153° W in the Pacific Ocean.Deep-Sea Res. 31, 1–11.Google Scholar
  15. Bischoff W. D., Bishop F. C. and Mackenzie F. T. (1983) Biogenically produced magnesian calcite: inhomogeneities in chemical and physical properties; comparison with synthetic phases.Am. Mineral. 68, 1183–1188.Google Scholar
  16. Bischoff W. D., Mackenzie F. T. and Bishop F. C. (1987) Stabilities of synthetic magnesian calcities in aqueous solution: Comparison with biogenic materials.Geochimica et Cosmochimica Acta 51, 1413–1423.Google Scholar
  17. Boardman M. R. and Neumann A. C. (1984) Sources of periplatform carbonates: Northwest Providence Channel, Bahamas.J. Sed. Petr. 54, 1110–1123.Google Scholar
  18. Brewer P. G., Wong G. T. F., Bacon M. P. and Spencer D. W. (1975) An oceanic calcium problem?Earth Planet. Sci. Lett. 26, 81–87.Google Scholar
  19. Broecker W. S. and Peng T. H. (1982)Tracers in the Sea. Palisades, N. Y., Eldigio Press.Google Scholar
  20. Broecker W. S. and Takahashi T. (1977) Neutralization of fossil fuel CO2 by marine calcium carbonate, InThe Fate of Fossil Fuel CO 2 in the Oceans. (ed. N.R. Anderson and A. Malahoff), pp. 213–241, Plenum Press, New York.Google Scholar
  21. Broecker W. S. and Takahashi T. (1978) The relationship between lysocline depth andin situ carbonate ion concentration.Deep-Sea Res. 25, 65–95.Google Scholar
  22. Busenberg E. and Plummer N. L. (1989) Thermodynamics of magnesian calcite solid-solutions at 25°C and 1 atm total pressure.Geochimica et Cosmochimica Acta 53, 1189–1208.Google Scholar
  23. Byrne R. H., Acker J. G., Betzer P. R., Feely R. A. and Cates M. H. (1984) Water column dissolution of aragonite in the Pacific Ocean.Nature 312, 321–326.Google Scholar
  24. Chave K. E. (1962) Factors influencing the mineralogy of carbonate sediments.Limnol. Oceanogr. 7, 218–223.Google Scholar
  25. Chave K. E., Deffeyes K. S., Weyl P. K., Garrels R. M. and Thompson M. E. (1962) Observations on the solubility of skeletal carbonates in aqueous solutions.Science 137, 33–34.Google Scholar
  26. Chave K. E. and Suess E. (1967) Suspended materials in seawater.Trans. N.Y. Acad. Sci. Ser. II 29, 991–1000.Google Scholar
  27. Chen C. T. (1978) Decomposition of calcium carbonate and organic carbon in the deep oceans.Science 201, 735–736.Google Scholar
  28. Chen C.T. (1990) Rates of calcium carbonate dissolution and organic carbon decomposition in the North Pacific Ocean.J. Oceanogr. Soc. Japan 46, 5, 201–210.Google Scholar
  29. Chen C. T., Millero F. J. and Pytkowicz R. M. (1982a) Comment on calculating the oceanic CO2 increase: A need for caution by A. M. Shiller.J. Geophys. Res. 87, 2083–2085.Google Scholar
  30. Chen C. T., Pytkowicz R. M. and Olson E. J. (1982b) Evaluation of the calcium problem in the South Pacific.Geochem. J. 16, 1–10.Google Scholar
  31. Chen C. T., Rodmen M. R., Wei C. L., Olson E. J., Feely R. A. and Gendron G. F. (1987)Carbonate chemistry of the North Pacific Ocean. NDP-029. Oak Ridge National Laboratory, Oak Ridge Tennessee, Carbon Dioxide Information Analysis Center.Google Scholar
  32. Chiswell S., Firing E., Karl D., Lukas R. and Winn C. (1990), Hawaii OceanTime-series data report 1, SOEST technical report #1. Honolulu, Hawaii, School of Ocean and Earth Science and Technology, University of Hawaii, November.Google Scholar
  33. Colmer H. G. (1986) Effects of animal behavior on sediment trap collections: implications for the calculation of aragonite fluxes.Deep-Sea Res. 33, 1017–1024.Google Scholar
  34. Droxler A., Schlager A. W. and Whallon C. C. (1983) Quaternary aragonite cycles and oxygen isotope record in Bahamian carbonate ooze.Geology 11, 235–239.Google Scholar
  35. Droxler A. W., Morse J. W. and Kornicker W. A. (1988) Controls on carbonate mineral accumulation in Bahamian basins and adjacent Atlantic Ocean sediments.J. Sed. Petr. 58, 1, 120–130.Google Scholar
  36. Droxler A. W., Morse J. W., Glaser K. S., Haddad G. A. and Baker P. A. (1991) Surface Sediment carbonate minerology and water column chemistry.Mar. Geol. 100, 277–289.Google Scholar
  37. Edmond J. M. (1970) High precision determination of titration alkalinity and total carbon dioxide content of seawater by potentiometric titration.Deep-Sea Res. 17, 737–750.Google Scholar
  38. Edmond J. M. (1974) On the dissolution of carbonate and silicate in the deep ocean.Deep-Sea Res. 21, 455–479.Google Scholar
  39. Fabry V. J. (1990) Shell growth rates of pteropod and heteropod molluscs and aragonite production in the open ocean: Implications for the marine carbonate system.J. Mar. Res. 48, 209–222.Google Scholar
  40. Feely R. A., Byrne R. H., Betzer P. R., Gendron J. F. and Acker J. G. (1984) Factors influencing the degree of saturation of the surface and intermediate waters of the North Pacific Ocean with respect to aragonite.J. Geophys. Res. 89, 10, 10631–10640.Google Scholar
  41. Feely R. A. and Chen C. T. (1982) The effect of excess CO2 on the calculated calcite and aragonite saturation horizons in the northeast Pacific.Geophys. Res. Lett. 9, 11, 1294–1297.Google Scholar
  42. Fiadeiro M. (1980) The alkalinity of the deep Pacific.Earth Planet. Sci. Lett. 49, 499–505.Google Scholar
  43. Friedman G. M. (1965) Occurrence and stability relationships of aragonite, high-magnesian calcite, and low-magnesian calcite under deep-sea conditions.Bull. Geol. Sco. America 76, 1191–1196.Google Scholar
  44. Glaser K. S. and Droxler A. W. (1991) High production and highstand shedding from deeply submerged carbonate banks, Northern Nicaragua Rise.J. Sed. Pet. 61, 128–142.Google Scholar
  45. Grasshoff K., Ehrhardt M. and Kremling K. (1983)Methods of Seawater Analysis. Verlag Chemie.Google Scholar
  46. Gross M. G., Milliman J. D., Tracey J. I. and Ladd H. S. (1969) Marine geology of Kure and Midway atolls, Hawaii: A preliminary report.Pac. Sci. 23, 17–25.Google Scholar
  47. Heath K. C. and Mullins H. T. (1984) Open-ocean, off-bank transport of fine grained carbonate sediment in the northern Bahamas. InFine-Grained Sediments: Deep Water Processes and Facies (ed. D. A. V. Stow and D. J. W. Piper), pp. 199–208. Geol. Soc. London Sp. Publ. 11: Blackwell Sci. Publ., London.Google Scholar
  48. Hine A. C., Wilber, R. J. Bane, J. M. Neumann, A. C. and Lorenson K. R. (1981) Offbank transport of carbonate sands along open leeward bank margins: northern Bahamas.Mar. Geol. 42, 327–348.Google Scholar
  49. Honjo S., Manganini S. J. and Cole J. J. (1982) Sedimentation of biogenic matter in the deep ocean.Deep-sea Res. 29, 609–625.Google Scholar
  50. Horibe Y., Endo K. and Tsubota H. (1974) Calcium in the South Pacific, and its correlation with carbonate alkalinity.Earth Planet. Sci. Lett. 23, 136–140.Google Scholar
  51. Knauer G. A., Martin J. H. and Bruland K. W. (1979) Fluxes of particulate carbon, nitrogen, and phosphorus in the upper water column of the northeast Pacific.Deep-Sea Res. 26, 97–108.Google Scholar
  52. Lalli C. M. and Gilmer R. W. (1989)Pelagic Snails: The Biology of Holoplanktonic Gastropod Molluscs., Stanford University Press, Stanford, CA.Google Scholar
  53. Land L. S. (1979) The fate of reef-derived sediment on the North Jamaican island slope.Mar. Geol. 29, 55–71.Google Scholar
  54. Lisitzin A. P. (1972)Sedimentation in the World Ocean. Society of Economic Paleontologists and Mineralogists, Tulsa, OK.Google Scholar
  55. Mackenzie F. T., Bischoff W. D., Bishop F. C., Loigens M., Schoonmaker J. and Wollast R. (1983) Magnesian calcites: Low-temperature occurrence, solubility, and solid solution behavior. InCarbonates: Minerology and Chemistry (ed. R.J. Reeder), Bookcrafters Inc., Chelsea, Michigan 48118.Google Scholar
  56. Mackenzie F. T., Kulm L. D., Cooley R. L. and Barnhart J. T. (1965)Homotrema rubrum (Lamarck), a sediment transport indicator.J. Sed. Pet. 35, 265–272.Google Scholar
  57. Menard H. W. and Smith S. M. (1966) Hypsometry of ocean basin provinces.J. Geophys. Res. 71, 18, 4305–4324.Google Scholar
  58. Milliman J. D. (1974)Recent Sedimentary Carbonates 1, Marine Carbonates. Berlin, Springer-Verlag.Google Scholar
  59. Milliman J. D. (1975) Dissolution of aragonite, Mg-calcite, and calcite in the North Atlantic Ocean.Geology 4, 461–462.Google Scholar
  60. Milliman J. D. (1993) Production and accumulation of calcium carbonate in the ocean: Budget of a nonsteady state.Global Biogeochem. Cycles 7, 927–957.Google Scholar
  61. Milliman J. D., Freile D., Steinen R. P. and Wilber R. J. (1993) Great Bahama Bank aragonitic muds: Mostly inorganically precipitated, mostly exported.J. Sed. Pet. 63, 589–595.Google Scholar
  62. Moberly R., Campbell J. F. and Coulbourn W. T. (1975)Offshore and Other Sand Resources for Oahu, Hawaii, UHIHI-SEAGRANT-TR-75-03. The University of Hawaii Sea Grant Program, Honolulu, Hawaii.Google Scholar
  63. Morse J. W. and Berner R. A. (1978) The chemistry of calcium carbonate in the deep oceans. InChemical Modeling: Speciation, Sorption, Solubility and Kinetics (ed. E. Jenne), A. C. S. Symp. Series, Amer. Chem. Soc., Washington D. C.Google Scholar
  64. Morse J. W. and Mackenzie F. T. (1990)Geochemistry of Sedimentary Carbonates. Elsevier, Amsterdam.Google Scholar
  65. Noriki S. and Tsunogai S. (1986) Particulate fluxes and major components of settling particles from sediment trap experiments in the Pacific Ocean.Deep-Sea Res. 33, 903–912.Google Scholar
  66. Parsons T. R., Maita Y. and Lalli C. M. (1984)A Manual of Chemical and Biological Methods of Seawater Analysis. Pergamon, Oxford.Google Scholar
  67. Pilskaln C. H., Neumann A. C. and Bane C. H. (1989) Periplatform carbonate flux in the northern Bahamas.Deep-Sea Res. 36, 1391–1406.Google Scholar
  68. Sabine C. L. (1992)Geochemistry of particulate and dissolved inorganic carbon in the central North Pacific. unpublished Ph.D. thesis, Honolulu, HI, University of Hawaii, p. 249.Google Scholar
  69. Sabine C. L. and Mackenzie F. T. (1991) Oceanic sinks for anthropogenic CO2.International Journal of Energy * Environment * Economics 1, 119–127.Google Scholar
  70. Sabine C. L., Mackenzie F. T., Winn C. W. and Karl D. M. (1995) Geochemistry of carbon dioxide in seawater at the Hawaii Ocean Time-series station, ALOHA.Global Biogeochem. Cycles, submitted.Google Scholar
  71. Schlanger W. and James N. P. (1978) Low-magnesian calcite limestones forming at the deep-sea floor, Tongue of the Ocean, Bahamas.Sedimentology 25, 675–702.Google Scholar
  72. Schlanger S. and Konishi K. (1975) The geographical boundry between the coral-algal and the bryozoan-algal limestone facies: A paleolatitude indicator. InIX Internat. Conf. Sed., Nice.Google Scholar
  73. Smith S. V. (1978) Coral reef area and contributions of reefs to processes and resources of the world's oceans.Nature 273, 225–226.Google Scholar
  74. Takahashi T. (1975) Carbonate chemistry of seawater and the calcite compensation depth in the oceans, InDissolution of Deep-Sea Carbonates: Cushman Foundation for Formaniniferal Research, Spec. Publ. 13, p. 11–26.Google Scholar
  75. Tsuchiya M. (1968)Upper Waters of the Intertropical Pacific Ocean. Johns Hopkins Oceanographic Studies No. 4.Google Scholar
  76. Tsunogai S., Uematsu M., Noriki S., Tanaka N. and Yamada M. (1982) Sediment trap experiment in the northern North Pacific: Undulation of settling particles.Geochem. J. 16, 129–147.Google Scholar
  77. Tsunogai S. and Watanabe Y. (1981) Calcium in the North Pacific water and the effect of organic matter on the calcium-alkalinity relation.Geochem. J. 15, 95–107.Google Scholar
  78. Urmos J., Mackenzie F. T. and Sharma S. K. (1986) Characterization of biominerals with Raman spectroscopy.EOS, Trans. Amer. Geophys. Union67, 1721 (abstr.).Google Scholar
  79. Van der Gaast S. (1991) Mineralogical analysis of marine particles by x-ray powder diffraction, InMarine Particles: Analysis and Characterization (ed. D.C. Hurd and D.W Spencer), p. 343–362, Geophysical Monograph 63, American Geophysical Union, Washington, DC.Google Scholar
  80. Wilber R. J., Milliman J. D. and Halley R. B. (1990) Accumulation of bank-top sediment on the western slope of Great Bahama Bank: Rapid progradation of a carbonate megabank.Geology 18, 970–974.Google Scholar
  81. Winn C., Chiswell S., Firing E., Karl D. and Lukas R. (1991)Hawaii Ocean Time-series data report 2, SOEST technical report #92-1. School of Ocean and Earth Science and Technology, University of Hawaii, Honolulu, Hawaii, December.Google Scholar
  82. Wyrtki K., Burks J. B., Latham R. C. and Patzert W. (1969)Oceanographic Observations during 1965–1967 in the Hawaiian Archipelago. Hawaii Inst. of Geophysics, University of Hawaii.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Christopher L. Sabine
    • 1
  • Fred T. Mackenzie
    • 2
  1. 1.Atmospheric and Ocean Sciences Program, Department of Geological and Geophysical SciencesPrinceton UniversityPrincetonUSA
  2. 2.Department of Oceanography, School of Ocean and Earth Science and TechnologyUniversity of HawaiiHonoluluUSA

Personalised recommendations