Journal of Atmospheric Chemistry

, Volume 17, Issue 2, pp 95–122

Nitrogen and sulfur species in Antarctic aerosols at Mawson, Palmer Station, and Marsh (King George Island)

  • D. L. Savoie
  • J. M. Prospero
  • R. J. Larsen
  • Huang F. 
  • M. A. Izaguirre
  • Huang T. 
  • T. H. Snowdon
  • L. Custals
  • C. G. Sanderson
Article

Abstract

High volume bulk aerosol samples were collected continuously at three Antarctic sites: Mawson (67.60° S, 62.50° E) from 20 February 1987 to 6 January 1992; Palmer Station (64.77° S, 64.06° W) from 3 April 1990 to 15 June 1991; and Marsh (62.18° S, 58.30° W) from 28 March 1990, to 1 May 1991. All samples were analyzed for Na+, SO42−, NO3, methanesulfonate (MSA), NH4+,210Pb, and7Be. At Mawson for which we have a multiple year data set, the annual mean concentration of each species sometimes vary significantly from one year to the next: Na+, 68–151 ng m−3; NO3, 25–30 ng m−3; nss SO42−, 81–97 ng m−3; MSA, 19–28 ng m−3; NH4+, 16–21 ng m−3;210Pb, 0.75–0.86 fCi m−3. Results from multiple variable regression of non-sea-salt (nss) SO42− with MSA and NO3 as the independent variables indicates that, at Mawson, the nss SO42−/MSA ratio resulting from the oxidation of dimethylsulfide (DMS) is 2.80±0.13, about 13% lower than our earlier estimate (3.22) that was based on 2.5 years of data. A similar analysis indicates that the ratio at Palmer is about 40% lower, 1.71±0.10, and more comparable to previous results over the southern oceans. These results when combined with previously published data suggest that the differences in the ratio may reflect a more rapid loss of MSA relative to nss SO42− during transport over Antarctica from the oceanic source region. The mean210Pb concentrations at Palmer and Marsh and the mean NO3 concentration at Palmer are about a factor of two lower than those at Mawson. The210Pb distributions are consistent with a210Pb minimum in the marine boundary layer in the region of 40°–60° S. These features and the similar seasonalities of NO3 and210Pb at Mawson support the conclusion that the primary source regions for NO3 are continental. In contrast, the mean concentrations of MSA, nss SO42−, and NH4+ at Palmer are all higher than those at Mawson: MSA by a factor of 2; nss SO42− by 10%; and NH4+ by more than 50%. However, the factor differences exhibit substantial seasonal variability; the largest differences generally occur during the austral summer when the concentrations of most of the species are highest. NH4+/(nss SO42−+MSA) equivalent ratios indicate that NH3 neutralizes about 60% of the sulfur acids during December at both Mawson and Palmer, but only about 30% at Mawson during February and March.

Key words

Antarctica Palmer Marsh Mawson aerosol particles biogeochemical cycles sulfate nitrate methanesulfonate lead-210 beryllium-7 sea-salt ammonium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ayers, G. P., Ivey, J. P., and Goodman, H. S., 1986, Sulfate and methanesulfonate in the maritime aerosol at Cape Grim, Tasmania,J. Atmos. Chem. 4, 173–185.Google Scholar
  2. Ayers, G. P., Ivey, J. P., and Gillett, R. W., 1991, Coherence between seasonal cycles of dimethyl sulphide, methanesulphonate and sulphate in marine air,Nature 349, 404–406.Google Scholar
  3. Berresheim, H., 1987, Biogenic sulfur emissions from the subantarctic and Antarctic oceans,J. Geophys. Res. 92, 13245–13262.Google Scholar
  4. Berresheim, H., Andreae, M. O., Ayers, G. P., Gillett, R. W., Merrill, J. T., Davis, V. J., and Chameides, W. L., 1990, Airborne measurements of dimethylsulfide, sulfur dioxide, and aerosol ions over the southern ocean south of Australia,J. Atmos. Chem. 10, 341–370.Google Scholar
  5. Berresheim, H., Andreae, M. O., Iverson, R. L., and Li, S. M., Seasonal variations of dimethylsulfide emissions and atmospheric sulfur and nitrogen species over the western North Atlantic Ocean,Tellus 43B, 353–372.Google Scholar
  6. De Angelis, M., Barkov, N. I., and Petrov, V. N., 1987, Aerosol concentrations over the last climate cycle (160 kyr) from an Antarctic ice core,Nature 325, 318–321.Google Scholar
  7. Genthon, C., 1992, Simulations of desert dust and sea-salt aerosols in Antarctica with a general circulation model of the atmosphere,Tellus 44B, 371–389.Google Scholar
  8. Gibson, J. A. E., Garrick, R. C., Burton, H. R., and McTaggart, A. R., 1988, Dimethylsulfide concentrations in the ocean close to the Antarctic continent,Geomicrobiol. J. 6, 179–184.Google Scholar
  9. Gibson, J. A. E., Garrick, R. C., Burton, H. R., and McTaggart, A. R., 1990, Dimethylsulfide and the algaPhaeocystis pouchetti in antarctic coastal waters,Mar. Biol. 104, 339–346.Google Scholar
  10. Gras, J. L., and Adriaansen, A., 1985, Concentration and size variation of condensation nuclei at Mawson, Antarctica,J. Atmos. Chem. 3, 93–106.Google Scholar
  11. Ito, T., 1989, Antarctic submicron aerosols and long-range transport of pollutants,Ambio 18, 34–41.Google Scholar
  12. Ivey, J. P., Davies, D. M., Morgan, V., and Ayers, G. P., 1986, Methanesulphonate in Antarctic ice,Tellus 38B, 375–379.Google Scholar
  13. Iwaska, Y., and Hayashi, M., 1990, Effect of polar stratospheric clouds on geochemical cycle of stratospheric material — stratospheric particle precipitation,Proc. NIPR Symp. Polar Meteorol. glaciol. 3, 23–35.Google Scholar
  14. Knap, A. H., 1990,The Long-Range Atmospheric Transport of Natural and Contaminant Substances, Kluwer Academic, Dordrecht.Google Scholar
  15. Lambert, G., Ardouin, B., and Sanak, J., 1990, Atmospheric transport of trace elements toward Antarctica,Tellus 42B, 76–82.Google Scholar
  16. Langner, J., and Rodhe, H., 1991, A global three-dimensional model of the tropospheric sulfur cycle,J. Atmos. Chem. 13, 225–263.Google Scholar
  17. Legrand, M., and Kirchner, S., 1988, Polar atmospheric circulation and chemistry of recent (1957–1983) South Polar precipitation,Geophys. Res. Lett. 15, 879–882.Google Scholar
  18. Legrand, M. R., and Kirchner, S., 1990, Origins and variations of nitrate in South Polar precipitation,J. Geophys. Res. 95, 3493–3507.Google Scholar
  19. Legrand, M., Feiet-Saigne, C., Saltzman, E. S., Germain, C., Barkov, N. I., and Petrov, V. N., 1991, Icecore record of oceanic emissions of dimethylsulphide during the last climate cycle,Nature 350, 144–146.Google Scholar
  20. Levy, H. II, and Moxim, W. J., 1989, Simulated global distribution and deposition of reactive nitrogen emitted by fossil-fuel combustion,Tellus 41B, 256–271.Google Scholar
  21. Minikin, A., and Wagenbach, D., 1990, The biogenic sulfur fraction of the coastal Antarctic aerosol, paper presented at the Seventh International Symposium of the Commission on Atmospheric Chemistry and Global Pollution (CACGP), Chemistry of the Global Atmosphere, Chamrousse, France, 5–11 September 1990.Google Scholar
  22. Mulvaney, R., Pasteur, E. C., Peel, D. A., Saltzman, E. S., and Whung, P.-Y., 1992, The ratio of MSA to non-sea-salt sulphate in Antarctic peninsula ice cores,Tellus 44B, 295–303.Google Scholar
  23. Nguyen, B. C., Mihalopoulos, N., and Belviso, S., 1990, Seasonal variation of atmospheric dimethylsulfide at Amsterdam Island in the southern Indian Ocean,J. Atmos. Chem. 11, 123–141.Google Scholar
  24. Penner, J. E., Atherton, C. S., Dignon, J., Ghan, S. J., and Walton, J. J., 1991, Tropospheric nitrogen: a three-dimensional study of sources, distributions, and deposition,J. Geophys. Res. 96, 959–990.Google Scholar
  25. Petit, J.-R., Briat, M., and Royer, A., 1981, Ice age aerosol content from East Antarctic ice core samples and past wind strength,Nature 293, 391–394.Google Scholar
  26. Polian, G., Lambert, G., Ardouin, B., and Jegou, A., 1986, Long-range transport of continental radon in Subantarctic areas,Tellus 38B, 178–189.Google Scholar
  27. Poole, L. R., Jones, R. L., Kurylo, M. J., Wahner, A., Calvert, J. G., Fried, A., Hampson, R. F., Hoffman, D. J., Keyser, L. F., Kolb, C. E., Leu, M.-T., Molina, M. J., Pitts, M. C., Ravishankara, A. R., Thomason, L. W., Tolbert, M. A., and Worsnop, D. R., 1991, Chapter 3. Heterogeneous processes: laboratory, field, and modeling studies, in R. T. Watson and D. L. Albritton (eds),Scientific Assessment of Ozone Depletion: 1991, pp. 3-1–3-22.Google Scholar
  28. Prospero, J. M., Savoie, D. L., Saltzman, E., and Larsen, R., 1991, Impact of oceanic sources of biogenic sulphur on sulphate aerosol concentrations at Mawson, Antarctica,Nature 350, 221–223.Google Scholar
  29. Pszenny, A. A. P., Castelle, A. J., Galloway, J. N., and Duce, R. A., 1989, A study of the sulfur cycle in the Antarctic marine boundary layer,J. Geophys. Res. 94, 9818–9830.Google Scholar
  30. Pszenny, A. A. P., 1992, Particle size distributions of methanesulfonate in the tropical Pacific marine boundary layer,J. Atmos. Chem. 14, 273–284.Google Scholar
  31. Saltzman, E. S., Savoie, D. L., Zika, R. G., and Prospero, J. M., 1983, Methane sulfonic acid in the marine atmosphere,J. Geophys. Res. 88, 10897–10902.Google Scholar
  32. Saltzman, E. S., Savoie, D. L., Prospero, J. M., and Zika, R. G., 1985, Atmospheric methanesulfonic acid and non-sea-salt sulfate at Fanning and American Samoa,Geophys. Res. Lett. 12, 437–440.Google Scholar
  33. Savoie, D. L., Prospero, J. M., and Saltzman, E. S., 1989a, Non-sea-salt sulfate and nitrate in trade wind aerosols at Barbados: evidence for long-range transport,J. Geophys. Res. 94, 5069–5080.Google Scholar
  34. Savoie, D. L., Prospero, J. M., Merrill, J. T., and Uematsu, M., 1989b, Nitrate in the atmospheric boundary layer of the tropical South Pacific: implications regarding sources and transport,J. Atmos. Chem. 8, 391–415, 1989.Google Scholar
  35. Savoie, D. L., Prospero, J. M., Larsen, R. J., and Saltzman, E. S., 1992, Nitrogen and sulfur species in aerosols at Mawson, Antarctica, and their relationship to natural radionuclides,J. Atmos. Chem. 14, 181–204.Google Scholar
  36. Savoie, D. L., Arimoto, R., Prospero, J. M., Duce, R. A., Graustein, W. C., Turekian, K. K., Galloway, J. N., and Keene, W. C., 1993a, Oceanic and anthropogenic contributions to nonsea-salt sulfate in the marine boundary layer over the North Atlantic Ocean,J. Geophys. Res. (in review).Google Scholar
  37. Savoie, D. L., Prospero, J. M., Arimoto, R., and Duce, R. A., 1993b, Nonsea-salt sulfate and methanesulfonate at American Samoa,J. Geophys. Res. (in review).Google Scholar
  38. Streten, N. A., 1963, Some observations of Antarctic katabatic winds,Australian Meteorol. Mag. 42, 1–23.Google Scholar
  39. Tuncel, G., Aras, N. K., and Zoller, W. H., 1989, Temporal variations and sources of elements in the South Pole atmosphere, 1. Nonenriched and moderately enriched elements,J. Geophys. Res. 94, 13025–13038.Google Scholar
  40. Wagenbach, D., Görlach, U., Moser, K., and Münnich, K. O., 1988, Coastal Antarctic aerosol: the seasonal pattern of its chemical composition and radionuclide content,Tellus 40B, 426–436.Google Scholar
  41. Whung, P.-Y., 1991, A study of methanesulfonic acid in ice cores, PhD dissertation, Univ. of Miami, Miami, Fla.Google Scholar
  42. Zhu, X. R., Prospero, J. M., Savoie, D. L., Huang, F., and Huang, T., 1989, Particle size distributions off nitrate, non-sea-salt sulfate, methanesulfonate and sea-salt at Barbados,Eos, Trans. AGU 70, 1020.Google Scholar
  43. Zhu, X. R., Prospero, J. M., Millero, F. J., Savoie, D. L., and Brass, G. W., 1992, The solubility of ferric ion in marine mineral aerosol solutions at ambient relative humidities,Mar. Chem. 38, 91–107.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • D. L. Savoie
    • 1
  • J. M. Prospero
    • 1
  • R. J. Larsen
    • 2
    • 1
  • Huang F. 
    • 1
  • M. A. Izaguirre
    • 1
  • Huang T. 
    • 1
  • T. H. Snowdon
    • 1
  • L. Custals
    • 1
  • C. G. Sanderson
    • 2
    • 1
  1. 1.Division of Marine and Atmospheric Chemistry, Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiUSA
  2. 2.Department of EnergyEnvironmental Measurements LaboratoryNew YorkUSA

Personalised recommendations