Journal of Science Education and Technology

, Volume 1, Issue 3, pp 191–209 | Cite as

Chaos in the classroom: Exposing gifted elementary school children to chaos and fractals

  • Helen M. Adams
  • John C. Russ
Article

Abstract

A unit of study for gifted 4th and 5th graders is described on the subject of mathematical periodicity and chaos and the underlying physical processes which produce these phenomena. A variety of hands-on experiments and the use of various data analysis tools and computer aids provide students with powerful raw material for their analysis, interpretation, and understanding. The concepts of simple periodic motion (e.g., a pendulum), complex superposition of motions (e.g., the vibrations in musical instruments), and chaotic sequences (e.g., stock prices) are covered, with numerous practical examples. Opportunities to involve related activities emphasizing language arts, history, and graphic art are included. The student response to the material is documented.

Keywords

Fractals periodicity chaos gifted students science education 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dewdney, A. K. (1986). Computer Recreations,Scientific American 255(6): 14–20.Google Scholar
  2. Eames, C., and Eames, R. (1989). Powers of Ten, Vol. 1. In the Films of Charles and Ray Eames (videotape), W. H. Freeman & Co., New York.Google Scholar
  3. Feder, J. (1988).Fractals Plenum Publishing, New York.Google Scholar
  4. Fletcher, N. H., and Thwaites, S. (1983). The physics of organ pipes,Scientific American 248(1): 94–103.Google Scholar
  5. Gleick, J. (1987).Chaos: Making a New Science Viking Penguin, New York.Google Scholar
  6. Hutchins, C. M. (1981). The acoustics of violin plates,Scientific American 245(4): 170–186.Google Scholar
  7. Jürgens, H., Peltgen, H-O., and Saupe, D. (1990).The Beauty of Fractals Lab (software for Macintosh computers), Springer Verlag, NY.Google Scholar
  8. Kaye, B. H. (1989).A Random Walk through Fractal Dimensions, VCH Verlagsgesellscaft, Weinheim.Google Scholar
  9. Mandelbrot, B. B. (1982).The Fractal Geometry of Nature, W. H. Freeman and Co., New York.Google Scholar
  10. Marson, R. (1983).Pendulums 34, TOPS Learning Systems, Canby, Oregon.Google Scholar
  11. National Council of Teachers of Mathematics. (1989).Curriculum and Evaluation Standards for School Mathematics, Reston, Virginia.Google Scholar
  12. Peitgen, H-O., Jürgens, H., Saupe, D., and Zahlten, C. (1990).Fractals, An Animated Discussion with Edward Lorenz and Benoit B. Mandelbrot (videotape), W. H. Freeman and Co., New York.Google Scholar
  13. Peitgen, H-O., and Saupe, D. (Eds.) (1988).The Science of Fractal Images Springer Verlag, New York.Google Scholar
  14. Porter, E., and Gleick, J. (1990).Nature's Chaos Viking Penguin, New York.Google Scholar
  15. Rossing, T. D. (1982). The physics of kettledrums.Scientific American 247(5): 172–178.Google Scholar
  16. Schroeder, M. (1991).Fractals, Chaos, Power Laws W. H. Freeman, New York.Google Scholar
  17. Stanley, H. E., and Ostrowsky, N. (1986).On Growth and Form Nijhoff, Dordrccht.Google Scholar
  18. Vicsek, T. (1989).Fractal Growth Phenomena World Scientific Publishing, Singapore.Google Scholar
  19. Witten, T. A, and Sander, L. M. (1981). Diffusion-limited aggregation: A kinetic critical phenomenon,Physical Review Letters 47: 1400–1403.Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • Helen M. Adams
    • 1
  • John C. Russ
    • 2
  1. 1.Wake County Public SchoolsAcademically Gifted InstructionRaleigh
  2. 2.College of EngineeringNorth Carolina State UniversityRaleigh

Personalised recommendations