Chromosoma

, Volume 58, Issue 2, pp 155–168 | Cite as

Satellite DNA and cytogenetic evolution

DNA quantity, satellite DNA and karyotypic variations in kangaroo rats (genus Dipodomys)
  • Frederick T. Hatch
  • Anne J. Bodner
  • Joseph A. Mazrimas
  • Dan H. MooreJr.
Article

Abstract

The genusDipodomys (kangaroo rats) exhibits major interspecies variations in the proportions of highly reiterated satellite DNA sequences in the genome as well as in the chromosome number and the proportions of uni-armed and bi-armed chromosomes. For nearly all of the approximately 22 species of the genus and several subspecies, liver DNA was distributed in neutral CsCl buoyant density gradients into four fractions: principal DNA (1.698 g/ml), intermediate-density DNA (1.702 g/ml), MS satellite (1.707 g/ml) and HS (heavy) satellites (1.713 g/ml). The total nuclear DNA content of diploid liver cells measured in eleven species by quantitative cytophotometry, ranged from 6.9 to 10.9 pg. These data were correlated with known features of the karyotypes of individual species. The salient findings were: (1) that interspecies variations in diploid chromosome number cluster at 52–54, 60–64 and 70–72 (2) that high total nuclear DNA was associated with high chromosome number, and with relatively large amounts of satellite DNA (3) that a high ratio of HS satellites to intermediate-density DNA was generally correlated with a predominance of metacentric and submetacentric chromosomes (high fundamental number). The relationships of satellite DNA to karyotype structure reveal a new level of hierarchy in the genome that appears capable of exerting global control over environmental adaptation and the evolution of new species. This mechanism is consistent with recent hypotheses that changes in the macro-structure of the genome are more important than point mutations in facilitating the rapid phases of animal evolution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkin, N.B., Mattinson, G., Begak, W., Ohno, S.: The comparative DNA content of 19 species of placental mammals, reptiles, and birds. Chromosoma (Berl.)17, 1–10 (1965)Google Scholar
  2. Bachmann, K.: Genome size in mammals. Chromosoma (Berl.)37, 85–93 (1972)Google Scholar
  3. Bonner, J.: Regulation of gene expression on higher organisms: how it all works. Ciba Found. Symp.28, 315–335 (1975)Google Scholar
  4. Bostock, C.J., Christie, S.: Chromosome banding and DNA replication studies on a cell line of Dipodomys merriami. Chromosoma (Berl.)48, 73–87 (1974)Google Scholar
  5. Bostock, C.J., Christie, S.: Chromosomes of a cell line of Dipodomys panamintinus (Kangaroo rat). A banding and autoradiographic study. Chromosoma (Berl.)51, 25–34 (1975)Google Scholar
  6. Brownlee, G.G., Cartwright, E.M., Brown, D.D.: Sequence studies of the 5S DNA of Xenopus laevis. J. molec. Biol.89, 703–718 (1974)Google Scholar
  7. Bush, G.L.: Modes of animal speciation. Ann. Rev. Ecol. Systematics6, 339–362 (1975)Google Scholar
  8. Cech, T.R., Hearst, J.E.: Organization of highly-repeated sequences in mouse main-band DNA. J. molec. Biol.100, 227–256 (1976)Google Scholar
  9. Davidson, E.H., Britten, R J.: Organization, transcription, and regulation in the animal genome. Quart. Rev. Biol.48, 565–613 (1973)Google Scholar
  10. Duffey, P.A.: Chromosome variation in Peromyscus: A new mechanism. Science176, 1333–1334 (1972)Google Scholar
  11. Fashing, N.J.: Implications of karyotypic variation in the kangaroo rat, Dipodomys heermanni. J. Mammal.54, 1018–1020 (1973)Google Scholar
  12. Flavell, R.B., Bennett, M.D., Smith, J.B., Smith, D.B.: Genome size and the proportion of repeated nucleotide sequence DNA in plants. Biochem. Genet.12, 257–269 (1974)Google Scholar
  13. Ford, E.B.: Genetic polymorphism, pp. 17–25. London: Faber and Faber 1965Google Scholar
  14. Fox, D.P.: DNA content of related species. Chromosomes today3, 32–37 (1972)Google Scholar
  15. Futcher, A.G.: Biosystematics of the Heermanni subgroup A of the genus, Dipodomys (Rodentia: Heteromyidae). Ph.D. Thesis, Loma Linda University 1974Google Scholar
  16. Golumb, H.M., Bahr, G.F.: Electron microscopy of human interphase nuclei. Determination of total dry mass and DNA-packing ratio. Chromosoma (Berl.)46, 233–245 (1974)Google Scholar
  17. Hatch, F.T., Mazrimas, J.A.: Fractionation and characterization of satellite DNAs of the kangaroo rat (Dipodomys ordii). Nucleic Acids Res.1, 559–575 (1974)Google Scholar
  18. Hirnegardner, R.: Cellular DNA content of the Mollusca. Comp. Biochem. Physiol.47A, 447–460 (1974)Google Scholar
  19. Johnson, W.E., Selander, R.K.: Protein variation and systematics in kangaroo rats (genus Dipodomys). System. Zool.20, 377–405 (1971)Google Scholar
  20. King, M.C., Wilson, A.C.: Evolution at two levels in humans and chimpanzees. Science188, 107–116 (1975)Google Scholar
  21. Lidicker, W.Z.: An analysis of intraspecific variation in the kangaroo rat Dipodomys merriami. Univ. Calif. Pubs. Zool.67, 125–218 (1960)Google Scholar
  22. Mascarello, J.T., Warner, J.W.: Chromosome variations in the plains woodrat: a pericentric inversion involving constitutive heterochromatin. Experientia (Basel)30, 10–91 (1974)Google Scholar
  23. Mayall, B.H.: Deoxyribonucleic acid cytophotometry of stained human leukocytes. I. Differences among cell types. J. Histochem. Cytochem.17, 249–257 (1969)Google Scholar
  24. Mayall, B.H., Mendelsohn, M.L.: Deoxyribonucleic acid cytophotometry of stained human leukocytes. II. The mechanical scanner of CYDAC, the theory of scanning photometry and the magnitude of residual errors. J. Histochem. Cytochem.18, 383–407 (1970)Google Scholar
  25. Maza, B.G., French, N.R., Aschwanden, A.P.: Home range dynamics in a population of heteromyid rodents. J. Mammal.54, 405–425 (1973)Google Scholar
  26. Mazrimas, J.A., Hatch, F.T.: Intranuclear distribution of satellite DNA from kangaroo rat. Exp. Cell Res.63, 462–466 (1970)Google Scholar
  27. Mazrimas, J.A., Hatch, F.T.: A possible relationship between satellite DNA and the evolution of kangaroo rat species (genus Dipodomys). Nature (Lond.) New Biol.240, 102–105 (1972)Google Scholar
  28. Miksche, J.P., Hotta, Y.: DNA base composition and repetitious DNA in several conifers. Chromosoma (Berl.)41, 29–36 (1973)Google Scholar
  29. Mizuno, S., Macgregor, H.C.: Chromosomes, DNA sequences, and evolution in salamanders of the genus Plethodon. Chromosoma (Berl.)48, 239–296 (1974)Google Scholar
  30. Moore, D.H., II: Use of residuals in fitting normal (gaussian) distributions. Biometrics (in press, 1976)Google Scholar
  31. Nei, M.: Molecular population cytogenetics and evolution. In: Frontiers of biology, Vol. 40. North Holland Publishing Comp. 1975Google Scholar
  32. Pathak, S., Hsu, T.C., Arrighi, F.E.: Chromosomes of Peromyscus (Rodentia, Cricetidae). IV. The role of heterochromatin in karyotypic evolution. Cytogenet. Cell Genet.12, 315–326 (1973)Google Scholar
  33. Prager, E.M., Wilson, A.C.: Slow evolutionary loss of the potential for interspecific hybridization in birds: A manifestation of slow regulatory evolution. Proc. nat. Acad. Sci. (Wash.)72, 200–204 (1975)Google Scholar
  34. Prescott, D.M., Bostock, C.J., Hatch, F.T., Mazrimas, J.A.: Location of satellite DNAs in the chromosomes of the kangaroo rat (Dipodomys ordii). Chromosoma (Berl.)42, 205–213 (1973)Google Scholar
  35. Rees, H., Jones, R.N.: The origin of the wide species variation in nuclear DNA content. Int. Rev. Cytol.32, 53–92 (1972)Google Scholar
  36. Schroder, G.D., Geluso, K.N.: Spatial distribution of Dipodomys spectabilis mounds. J. Mammal.56, 363–368 (1975)Google Scholar
  37. Soulé, M.: The epistasis cycle: A theory of marginal populations. Ann. Rev. Ecol. Systematics4, 165–187 (1973)Google Scholar
  38. Southern, E.: Eukaryotic DNA. MTP International Rev. Sci., Biochemistry of Nucleic Acids6, 101–139 (1974)Google Scholar
  39. Sparrow, A.H., Price, H.J., Underbrink, A.G.: A survey of DNA content per cell and per chromosome of prokaryotic and eukaryotic organisms: some evolutionary considerations. In: Evolution of genetic systems (H.H. Smith, ed.). Brookhaven Symp. Biol.23, pp. 451–494. New York: Gordon and Breach 1971Google Scholar
  40. Stock, A.D.: Chromosome evolution in the genus Dipodomys and its taxonomic and phylogenetic implications. J. Mammal.55, 505–526 (1974)Google Scholar
  41. Stock, A.D., Hsu, T.C.: Evolutionary conservatism in arrangement of genetic material. Chromosoma (Berl.)43, 211–224 (1973)Google Scholar
  42. Sumner, A.T.: A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res.76, 304–306 (1972)Google Scholar
  43. Turleau, C., Grouchy, J. de, Klein, M.: Phylogenie chromosomique de l'homme et des primates hominiens (Pan troglodytes, Gorilla gorilla et Pongo pygmaeus). Essai de reconstitution du caryotype de l'ancêtre commun. Ann. Génét. (Paris)15, 225–240 (1972)Google Scholar
  44. White, M.J.D.: Chromosomal rearrangements and speciation in animals. Ann. Rev. Genet.3, 75–98 (1969)Google Scholar
  45. White, M.J.D.: Animal cytology and evolution. Cambridge: Cambridge University Press 1973Google Scholar
  46. Wilson, A.C.: Evolutionary importance of gene regulation. Stadler Symp.7, 117–133 (1975)Google Scholar
  47. Wilson, A.C., Bush, G.L., Case, S.M., King, M.C.: Social structuring of mammalian populations and rate of chromosomal evolution. Proc. nat. Acad. Sci (Wash.)72, 5061–5065 (1975)Google Scholar
  48. Wilson, A.C., Maxson, L.R., Sarich, V.M.: Two types of molecular evolution. Evidence from studies of interspecific hybridization. Proc. nat. Acad. Sci. (Wash.)71, 2843–2847 (1974a)Google Scholar
  49. Wilson, A.C., Sarich, V.M., Maxson, L.R.: The importance of gene rearrangement in evolution: Evidence from studies on rates of chromosomal, protein, and anatomical evolution. Proc. nat. Acad. Sci. (Wash.)71, 3028–3030 (1974b)Google Scholar
  50. Yasmineh, W.G., Yunis, J.J.: Localization of repeated DNA sequences in CsCl gradients by hybridization with complementary RNA. Exp. Cell Res.88, 340–344 (1974)Google Scholar
  51. Yosida, T.H., Sagai, T.: Banding pattern analysis of polymorphic karyotypes in the black rat by a new differential staining technique. Chromosoma (Berl.)37, 387–394 (1972)Google Scholar
  52. Yosida, T.H., Sagai, T.: Similarity of Geimsa banding patterns of chromosomes in several species of the Genus Rattus. Chromosoma (Berl.)41, 93–101 (1973)Google Scholar
  53. Yunis, J.J., Yasmineh, W.H.: Heterochromatin, satellite DNA, and cell function. Science174, 1200–1209 (1971)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Frederick T. Hatch
    • 1
  • Anne J. Bodner
    • 1
  • Joseph A. Mazrimas
    • 1
  • Dan H. MooreJr.
    • 1
  1. 1.Biomedical and Environmental Research Division, Lawrence Livermore LaboratoryUniversity of CaliforniaLivermoreUSA
  2. 2.Biotech Research Laboratories, Inc.RockvilleUSA

Personalised recommendations