Advertisement

Molecular and General Genetics MGG

, Volume 146, Issue 3, pp 247–251 | Cite as

The location of the feedback-specific region within thePyrimidine-3 locus ofNeurospora crassa

  • Andrew J. Makoff
  • Alan Radford
Article

Summary

Thepyrimidine-3 locus ofNeurospora crassa specifies two enzyme activities, pyrimidine-specific carbamyl phosphate synthetase (CPSpyr) and aspartate transcarbamylase (ATC). ATC is translationally distal. CPSpyr, but not ATC, is subject to feedback inhibition by uridine triphosphate (UTP). To investigate the location of the feedback-specific region within the locus, inhibition of a number ofpyr-3 alleles by UTP was investigated. All CPS+ ATC- polar alleles, revertants of CPS- ATC- polar alleles, and 5-fluorouracil-resistant mutants had normal UTP response. The location of the feedback-specific region is in or close to the CPS-specific region.

Keywords

Enzyme Phosphate Enzyme Activity Aspartate Triphosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, P.M., Marvin, S.V.: Effect of ornithine, IMP and UMP on carbamyl phosphate synthetase fromE. coli. Biochem. biophys. Res. Commun.32, 928–934 (1968)Google Scholar
  2. Anderson, P.M., Meister, A.: Control ofE. coli carbamyl phosphate synthetase by purine and pyrimidine nucleotides. Biochemistry (Wash.)5, 3164–3169 (1966)Google Scholar
  3. Davis, R.H.: Carbamyl phosphate synthesis inNeurospora crassa. 1. Preliminary characterization of arginine-specific carbamyl phosphokinase. Biochim. biophys. acta (Amst.)107, 44–53 (1965)Google Scholar
  4. Davis, R.H.: Channeling in Neurospora metabolism. In: Organizational biosynthesis (Vogel, H.J., Lampen, J.O., Bryson, V., eds.), pp. 303–322. New York: Academic Press Inc. 1967Google Scholar
  5. Gerhart, J.C., Pardee, A.B.: The Enzymology of control by feedback inhibition. J. biol. Chem.237, 891–896 (1962)Google Scholar
  6. Jha, K.K.: Genes conferring resistance to 8-aza-adenine inNeurospora crassa and the variability of resistant alleles in theaza-1 locus with respect to purines. Molec. gen. Genet.114, 156–167 (1971)Google Scholar
  7. Lacroute, F.: Regulation of pyrimidine biosynthesis inSaccharomyces cerevisiae. J. Bact.95, 824–832 (1968)Google Scholar
  8. Lacroute, F., Pierard, A., Grenson, M., Wiame, J.M.: The biosynthesis of carbamyl phosphate inSaccharomyces cervisiae. J. gen. Microbiol.40, 127–142 (1965)Google Scholar
  9. Lue, P.F., Kaplan, J.G.: The aspartate transcarbamylase and carbamyl phosphate synthetase of yeast: a multi-functional enzyme complex. Biochem. biophys. Res. Commun.34, 426–433 (1969)Google Scholar
  10. Lue, P.F., Kaplan, J.G.: Aggregation states of a regulatory enzyme complex catalyzing the early steps of pyrimidine biosynthesis in baker's yeast. Canad. J. Biochem.49, 403–411 (1971)Google Scholar
  11. Perkins, D.D.: Experience using alcoy multiple translocation tester strains to assign genes and chromosome rearrangements to linkage groups. Neurospora Newsletter9, 11–12 (1966)Google Scholar
  12. Prescott, L.M., Jones, M.E.: Modified methods for the determination of carbamyl aspartate. Analyt. Biochem.32, 408–419 (1969)Google Scholar
  13. Radford, A.: Polarised complementation at thepyridine-3 locus of Neurospora. Molec. gen. Genet.104, 288–294 (1969a)Google Scholar
  14. Radford, A.: Imtormation from ICR-170-induced mutants on the structure of thepyrimidine-3 locus in Neurospra. Mutation Res.8, 537–544 (1969b)Google Scholar
  15. Radford, A.: Pyrimidine-requiring suppressor mutations ofarginine-3 in Neurospora and their bearing on the structure of thepyrimidine-3 locus. Molec. gen. Genet.107, 97–106 (1970a)Google Scholar
  16. Radford, A.: Intragenic mapping of the Neurosporapyrimidine-3 locus by functional deletions. Molec. gen. Genet.109, 241–245 (1970b)Google Scholar
  17. Radford, A.: Concise linkage maps ofNeurospora crassa. Neurospora Newsletter22, 17–19 (1975)Google Scholar
  18. Trotta, P.P., Burt, M.E., Haschemeyer, R.H., Meister, A.: Reversible dissociation of carbamyl phosphate synthetase into a regulated synthesis subunit and a subunit required for glutamine utilization. Proc. nat. Acad. Sci. (Wash.)68, 2599–2603 (1971)Google Scholar
  19. Vogel, H.J.: Distribution of lysine pathways in fungi: evolutionary implications. Amer. Naturalist98, 435–446 (1964)Google Scholar
  20. Williams, L.G., Bernhardt, S.A., Davis, R.H.: Copurification of pyrimidine-specific carbamyl phosphate synthetase and aspartate transcarbamylase ofNeurospora crassa. Biochemistry (Wash.)9, 4329–4335 (1970)Google Scholar
  21. Williams, L.G., Davis, R.H.: Pyrimidine-specific carbamyl phosphate synthetase inNeurospora crassa. J. Bact.103, 335–341 (1970)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Andrew J. Makoff
    • 1
  • Alan Radford
    • 1
  1. 1.Department of GeneticsUniversity of LeedsLeedsU.K.

Personalised recommendations