Biodegradation

, Volume 6, Issue 3, pp 181–189 | Cite as

Microbial dehalogenation

  • J. Howard Slater
  • Alan T. Bull
  • David J. Hardman
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander M (1981) Biodegradation of chemicals of environmental concern. Science 211: 132–138Google Scholar
  2. Armfield SJ, Sallis PJ, Baker PB, Bull AT & Hardman DJ (1995) Biodegradation of haloalkanes byRhodococcus erythropolis Y2: the presence of an oxygenase-type dehalogenase complements a halidohydrolase activity. Biodegradation (in press)Google Scholar
  3. Barth PT, Bolton L & Thomson JC (1992) Cloning and partial sequencing of an operon encoding twoPseudomonas putida haloalkanoate dehalogenases of opposite stereospecificity. J. Bacteriol. 174: 2612–2619Google Scholar
  4. Bouwer EJ, Rittman BE & McCarty PL (1981) Anaerobic degradation of halogenated 1- and 2-carbon organic compounds. Env. Sci. Tech. 15: 596–599Google Scholar
  5. Brokamp A & Schmidt FRJ (1991) Survival ofAlcaligenes xylosoxidans degrading 2,2-dichloropropionate and horizontal transfer of its halidohydrolase gene in a soil microcosm. Curr. Microbiol. 22: 299–306Google Scholar
  6. Bull AT, Hardman DJ & Stubbs BM (1992) Dehalogenation of organohalogen-containing compounds. US Patent P10504.901Google Scholar
  7. Cairus SS (1994) The cloning and analysis ofRhizobium dehalogenase genes. Ph.D. Thesis, University of Leicester, LeicesterGoogle Scholar
  8. Castro CE & Bartnicki EW (1965) Biological cleavage of carbonhalogen bonds in the metabolism of 3-bromopropanol. Biochimica et Biophysica Acta 100: 384–392Google Scholar
  9. —— (1968) Biodehalogenation. Epoxidation of halohydrins, epoxide opening, and transdehalogenation by aFlavobacterium species. Biochemistry 7: 3213–3218Google Scholar
  10. Chang KH, Liang PH, Beck W, Scholten JD & Dunaway-Marino D (1992) Isolation and characterization of the three polypeptide components of 4-chlorobenzoate dehalogenase fromPseudomonas sp. strain CBS-3. Biochemistry 31: 5605–5610Google Scholar
  11. Chaudhry GR & Chapalamadugu S (1991) Biodegradation of halogenated organic compounds. Microbiol. Rev. 55: 59–79Google Scholar
  12. Commandeur LCM & Parsons JR (1994) Biodegradation of halogenated aromatic compounds. In: Ratledge C (Ed) Biochemistry of Microbial Degradation. (pp 423–458) Kluwer Academic Publ. Dordrecht, The NetherlandsGoogle Scholar
  13. Den Dooren Jong LE de (1926) Bijdrage tot de kennis van het mineralisatieproces. Nijgh van Ditmar, RotterdamGoogle Scholar
  14. DeWeerd KA, Mandelco L, Tanner RS, Woese CR & Sulflita JM (1990)Desulfomonile tiedjei gen. nov. and sp. nov., a novel anaerobic dehalogenating sulfate-reducing bacterium. Arch. Microbiol. 154: 23–30Google Scholar
  15. Elsner A, Müller R & Lingens F (1991) Separate cloning and expression analysis of two protein components of 4-chlorobenzoate dehalogenase fromPseudomonas sp. CBS3. J. Gen. Microbiol. 137: 477–481Google Scholar
  16. Fathepure BZ & Boyd SA (1988) Dependence of tetrachloroethylene dechlorination on methanogenic substrate consumption byMethanosarcina sp. strain DCM. Appl. Env. Microbiol. 54: 2976–2980Google Scholar
  17. Fathepure BZ & Vogel TM (1991) Complete degradation of poly-chlorinated hydrocarbons by a two-stage biofilm reactor. Appl. Env. Microbiol. 53: 2671–2674Google Scholar
  18. Fogel MM, Taddeo AR & Fogel S (1986) Biodegradation of chlorinated ethanes by a methane-utilizing mixed culture. Appl. Env. Microbiol. 51: 720–724Google Scholar
  19. Franken SM, Rozeboom HJ, Kalk KH & Dijkstra BW (1991) Crystal structure of haloalkane dehalogenase: an enzyme to detoxify halogenated alkanes. EMBO Journal 10: 1297–1302Google Scholar
  20. Gibson SA & Sulflita JM (1990) Anaerobic degradation of 2,4,5-trichlorophenoxyacetic acid in samples from methanogenic aquifer. stimulation by short-chain organic acids and alcohols. Appl Env. Microbiol. 56: 1825–1832Google Scholar
  21. Goldman P, Milne GWA & Keister DB (1968) Carbon-halogen bond cleavage. III. Studies on bacterial halidohydrolases. J. Biol. Chem. 243: 428–434Google Scholar
  22. Häggblom MM & Young LY (1990) Chlorophenol degradation coupled to sulfate reduction. Appl. Env. Microbiol. 56: 3255–3260Google Scholar
  23. Harayama S, Kok M & Neidle EL (1992) Functional and evolutionary relationships among diverse monooxygenases. Ann. Rev. Microbiol. 46: 565–601Google Scholar
  24. Hardman DJ & Slater JH (1981) Dehalogenases in soil bacteria. J. Gen. Microbiol. 123: 117–128Google Scholar
  25. Hardman DJ (1991) Biotransformation of halogenated compounds. Crit. Rev. Biotechnol. 11: 1–40Google Scholar
  26. Higgins IJ, Hammond RC, Sariaslani FS, Best D, Davies MM, Tryhorn SE & Taylor F (1979) Biotransformation of hydrocarbons and related compounds by whole organism suspension of methane-grownMethylosinus trichosporium OB3b. Biochem. Biophys. Res. Comm. 89: 671–677Google Scholar
  27. Horowitz A, Sulflita JM & Tiedje JM (1983) Reductive dehalogenation of halobenzoates by anaerobic lake sediment microorganisms. Appl. Env. Microbiol. 45: 1459–1461Google Scholar
  28. Hughes S (1988) Microbial growth on 3-chloropropionic acid. PhD Thesis University of Wales, CardiffGoogle Scholar
  29. Hylckama Vlieg JET & Janssen DB (1991) Bacterial degradation of 3-chloroacrylic acid and the characterization ofcis- andtrans- specific dehalogenases. Biodegradation 2: 25–31Google Scholar
  30. Imai R, Nagata Y, Fukada M, Tagaki M & Yano K (1991) Molecular cloning of aPseudomonas paucimobilis gene encoding a 17-kilodalton polypeptide that eliminates HC1 molecules from γ-hexachlorocyclohexane. J. Bacteriol. 173: 6811–6819Google Scholar
  31. Janssen DB, Gerritse J, Brackman J, Kalk C, Jager D & Witholt B (1988) Purification and characterization of a bacterial dehalogenase with activity toward halogenated alkanes, alcohols and ethers. Eur. J. Biochem. 171: 67–72Google Scholar
  32. Janssen DB, Pries F, Ploeg J van der, Kazemier B, Terpstra P & Witholt B (1989) Cloning of 1,2-dichloroethane degradation genes ofXanthobacter autotrophicus GJ10 and expression and sequencing of thedh1A gene. J. Bacteriol. 171: 6791–6799Google Scholar
  33. —— (1994) Genetics and biochemistry of dehalogenating enzymes. Ann. Rev. Microbiol. 48: 163–191Google Scholar
  34. Jensen HL (1951) Decomposition of chlorosubstituted aliphatic acids by soil bacteria. Can. J. Microbiol. 3: 151–164Google Scholar
  35. —— (1957) Decomposition of chloroorganic acids by fungi. Nature London 180: 1416Google Scholar
  36. —— (1959) Decomposition of chlorine-substituted organic acids by fungi Acta. Agriculturae Scandinavica 9: 421–434Google Scholar
  37. —— (1960) Decomposition of chloroacetates and chloropropionates by bacteria. Acta Agriculturae Scandinavica 10: 83–103Google Scholar
  38. Jones DHA, Barth PT, Byrom D & Thomas CM (1992) Nucleotide sequence of the structural gene encoding a 2-haloalkanoic acid dehalogenase ofPseudomonas putida strain AJ1 and purification of the encoded protein. J. Gen. Microbiol. 138: 675–683Google Scholar
  39. Kasai N, Tsujimura K, Unoura K & Suzuki T (1990) Degradation of 2,3-dichloro-1-propanol byPseudomonas sp. Agric. Biol. Chem. 54: 3185–3190Google Scholar
  40. Kawasaki H, Toyama T, Maeda T, Nishino H & Tonomura K (1994) Cloning and sequence analysis of a plasmid-encoded 2-haloacid dehalogenase gene fromPseudomonas putida no. 109. Biosci. Biotech. Biochem. 58: 160–163Google Scholar
  41. Kawasaki H, Tsuda K, Matsushita I & Tonomura K (1992) Lack of homology between two haloacetate dehalogenase genes encoded on a plasmid fromMoraxella species strain B. J. Gen. Microbiol. 138: 1317–1323Google Scholar
  42. Keuning S, Janssen De Beers & Witholt B (1985) Purification and characterization of hydrolytic haloalkane dehalogenase fromXanthobacter autotrophicus GJ10. J. Bacteriol. 163: 635–639Google Scholar
  43. Knackmuss HJ (1981) Degradation of halogenated and sulfonated hydrocarbons. In: Leisinger T, Hütter R, Cook AM & Nüesch J (Eds) Microbial Degradation of Xenobiotics and Recalcitrant Compounds. (pp 189–212) Academic Press, New YorkGoogle Scholar
  44. Kohler-Staub D & Kohler HPE (1989) Microbial degradation of β-chlorinated four-carbon aliphatic acids. J. Bacteriol. 171: 1428–1434Google Scholar
  45. Kohler-Staub D & Leisinger T (1985) Dichloromethane dehalogenase ofHyphomicrobium species strain DM2. J. Bacteriol. 162: 676–681Google Scholar
  46. Kohler-Staub D, Hartmans S, Gälli R, Suter F & Leisinger T (1986) Evidence for identical dichloromethane dehalogenases in different methylotrophic bacteria. J. Gen. Microbiol. 132: 2837–2843Google Scholar
  47. La Roche SD & Leisinger T (1990) Sequence analysis and expression of the bacterial dichloromethane dehalogenase structural gene, a member of the glutathione S-transferase supragene family. J. Bacteriol. 172: 164–171Google Scholar
  48. Leigh JA, Skinner AJ & Cooper RA (1988) Partial purification, stereospecificity and stoichiometry of three dehalogenases from aRhizobium species. FEMS Microbiol. Lett. 49: 353–356Google Scholar
  49. Leisinger T & Bader R (1993) Microbial dehalogenation of synthetic organohalogen compounds: hydrolytic dehalogenases. Chimia 47: 116–121Google Scholar
  50. Little M & Williams PA (1971) A bacterial halidohydrolase. Its purification, some properties and its modification by specific amino acid reagents. Eur. J. Biochem. 21: 99–109Google Scholar
  51. Löffler F, Müller R & Lingens F (1992) Purification and properties of 4-halobenzoate-coenzyme A ligase fromPseudomonas sp. CBS3. Hoppe-Seyler's Zeitschrift für Physiologische Chemie 373: 1001–1007Google Scholar
  52. Morris PJ, Mohn WW, Quensen JF, Tiedje JM & Boyd SA (1992) Establishment of a polychlorinated biphenyl-degrading enrichment culture with predominantlymeta dechlorination. Appl. Env. Microbiol. 58: 3088–3094Google Scholar
  53. Motosugi K, Esaki N & Soda K (1982a) Purification and properties of 2-haloacid dehalogenase fromPseudomonas putida. Agric. Biol. Chem. 46: 837–838Google Scholar
  54. —— (1982b) Bacterial assimilation of D- and L-2-chloropropionates and occurrence of a new dehalogenase. Arch. Microbiol. 131: 179–183Google Scholar
  55. Müller R, Oltmans RH & Lingens F (1988) Enzymic dehalogenation of 4-chlorobenzoate by extracts fromArchrobacter sp. SU DSM 20407. Hoppe-Seyler's Zeitschrift für Physiologische Chemie 369: 567–571Google Scholar
  56. Müller R, Thiele J, Klages U & Lingens F (1984) Incorporation of [18O]-water into 4-hydroxybenzoate dehalogenase fromPseudomonas species CBS3. Biochem. & Biophys. Res. Comm. 124: 178–182Google Scholar
  57. Murdiyatmo U (1991) Molecular genetic analysis of a 2-haloacid halidohydrolase structural gene. PhD Thesis, University of Kent at Canterbury, CanterburyGoogle Scholar
  58. Murdiyatmo U, Asmara W, Tsang JSH, Baines AJ, Bull AT & Hardman DJ (1992) Molecular biology of the 2-haloacid halidohydrolase fromPseudomonas cepacia MBA4. Biochem. J. 284: 87–93Google Scholar
  59. Nagasawa T, Nakamura T, Yu F, Watanabe I & Yamada H (1992) Purification and characterization of halohydrin hydrogen-halide lyase from a recombinantEscherichia coli containing the gene from aCorynebacterium species. Appl. Microbiol. Biotech. 36: 478–482Google Scholar
  60. Nagata Y, Nariya T, Ohtomo R, Fukuda M, Yano K & Takagi M (1993) Cloning and sequencing of a dehalogenase gene encoding an enzyme with hydrolase activity involved in the degradation of gamma-hexachlorocyclohexane inPseudomonas paucimobilis. J. Bacteriol. 175: 6403–6410Google Scholar
  61. Nakamura T, Nagasawa T, Yu F, Watanabe I & Yamada H (1992) Resolution and some properties of enzymes involved in enantioselective transformation of 1,3-dichloro-2-propanol to (R)-3-chloro-1,2-propanediol byCorynebacterium species strain N-1074. J. Bacteriol. 174: 7613–7619Google Scholar
  62. —— (1994) Characterization of a novel enantioselective halohydrin hydrogen-lyase. Appl. Env. Microbiol. 60: 1297–1301Google Scholar
  63. Nardi-Die V, Kurihara T, Okamura O, Liu JQ, Koshikawa H, Ozaki H, Terashima Y, Esaki N & Soda K (1994) Comparative studies of genes encoding thermostable L-2-halo acid dehalogenase fromPseudomonas species strain YL, other dehalogenases, and two related hypothetical proteins fromEscherichia coli. Appl. Env. Microbiol. 60: 3375–3380Google Scholar
  64. Penfold WJ (1913) The inhibitory selective action on bacteria of bodies related to monochloracetic acid. (A contribution to the theory of cell intoxication.) J. Hygiene 13: 35–48Google Scholar
  65. Peters RA (1952) Lethal synthesis. Proceedings of the Royal Society of London Series B 139: 143–167Google Scholar
  66. Ploeg J van der, Hall G van & Janssen DB (1991) Characterization of the haloacid dehalogenase fromXanthobacter autotrophicus GJ10 and sequencing of thedhlB gene. J. Bacteriol. 173: 7925–7933Google Scholar
  67. Quensen JF, Tiedje JM & Boyd S (1988) Reductive dechlorination of polychlorinated biphenyls by anaerobic microorganisms from sediments. Science 242: 752–754Google Scholar
  68. Reineke W & Knackmuss HJ (1988) Microbial degradation of haloaromatics. Ann. Rev. Microbiol. 42: 263–287Google Scholar
  69. Sallis PJ, Armfield SJ, Bull AT & Hardman DJ (1990) Isolation and characterization of a haloalkane halidohydrolase fromRhodococcus erythropolis Y2. J. Gen. Microbiol. 136: 115–120Google Scholar
  70. Schmitz A, Gartemann KH, Fielder J, Grund E & Eichenlaub R (1992) Cloning and sequence analysis of genes for dehalogenation of 4-chlorobenzoate fromArthrobacter sp. strain SU. Appl. Env. Microbiol. 58: 4068–4071Google Scholar
  71. Schneider B, Müller R, Frank R & Lingens F (1991) Complete nucleotide sequences and comparison of the structural genes of two 2-haloalkanoic acid dehalogenases fromPseudomonas species strain CBS3. J. Bacteriol. 173: 1530–1535Google Scholar
  72. Scholten JD, Chang KH, Babbitt PC, Charest H, Sylvestre M & Dunaway-Marino D (1991) Novel enzymatic hydrolytic dehalogenation of a chlorinated aromatic. Science 253: 182–185Google Scholar
  73. Scholtz R, Leisinger T, Suter F & Cook AM (1987) Characterization of 1-chlorohexane halidohydrolase, a dehalogenase of wide substrate range from anArthrobacter species. J. Bacteriol. 169: 5016–5021Google Scholar
  74. Scholtz R, Messi F, Leisinger T & Cook AM (1988a) Three dehalogenases and physiological restraints in the biodegradation of haloalkanes byArthrobacter species strain HA1. App. Env. Microbiol. 54: 3034–3038Google Scholar
  75. Scholtz R, Wackett LP, Egli C, Cook AM & Leisinger T (1988b) Dichloromethane dehalogenase with improved catalytic activity isolated from a fast-growing dichloromethane-utilizing bacterium. J. Bacteriol. 170: 5698–5704Google Scholar
  76. Slater JH (1994) Microbial dehalogenation of haloaliphatic compounds. In: Ratledge C (Ed) Biochemistry of Microbial Degradation. (pp 379–421) Kluwer Academic Publ., Dordrecht, The NetherlandsGoogle Scholar
  77. Smith JM, Harrison K & Colby J (1990) Purification and characterization of D-2-haloacid dehalogenase fromPseudomonas putida strain AJ1/23. J. Gen. Microbiol. 136: 881–886Google Scholar
  78. Stucki GR, Gälli R, Ebersold HR & Leisinger T (1981) Dehalogenation of dichloromethane by cell extracts ofHyphomicrobium DM2. Arch. Microbiol. 130: 366–371Google Scholar
  79. Topping AW (1992) An investigation into the transposition and dehalogenase functions ofDEH, a mobile genetic element, fromPseudomonas putida strain PP3. PhD Thesis, University of Wales, CardiffGoogle Scholar
  80. Verschueren KHG, Franken SM, Rozeboom HJ, Kalk KH & Dijkstra BW (1993a) Refined X-ray structures of haloalkane dehalogenase at pH 6.2 and pH 8.2 and implications for the reaction mechanism. J. Mol. Biol. 232: 856–872Google Scholar
  81. Verschueren KHG, Seljée F, Rozeboom HJ, Kalk KH & Dijkstra BW (1993b) Crystallographic analysis of the catalytic mechanism of haloalkane dehalogenase. Nature, London 363: 693–698Google Scholar
  82. Vogel TM & McCarty PL (1985) Biotransformation of tetrachloroethylene, dichloroethylene, vinylchloride and carbon dioxide under methanogenic conditions. Appl. Env. Microbiol. 49: 1080–1083Google Scholar
  83. Weightman AJ, Weightman AL & Slater JH (1982) Stereospecificity of 2-monochloropropionate dehalogenation by the two dehalogenases ofPseudomonas putida PP3: evidence of two different dehalogenation mechanisms. J. Gen. Microbiol. 128: 1755–1762Google Scholar
  84. —— (1992) Microbial dehalogenation of trichloroacetic acid. World J. Microbiol. Biotechnol. 8: 512–518Google Scholar
  85. Wijngaard AJ van der, Janssen D & Witholt B (1989) Degradation of epichlorohydrin and halohydrins by bacterial cultures isolated from freshwater sediments. J. Gen. Microbiol. 135: 2199–2208Google Scholar
  86. Wijngaard AJ van der, Reuvekamp PTW & Janssen DB (1991) Purification and characterization of haloalcohol dehalogenase fromArthrobacter sp. strain AD2. J. Bacteriol. 173: 124–129Google Scholar
  87. Wijngaard AJ van der, Kamp KWHJ van der, Ploeg J van der, Pries F, Kazemier B & Janssen DB (1992) Degradation of 1,2-dichloroethane byAncylobacter aquaticus and other facultative methylotrophic bacteria. Appl. Env. Microbiol. 58: 976–983Google Scholar
  88. Yokota T, Fuse H, Omori T & Minoda Y (1986) Microbial dehalogenation of haloalkanes by oxygenase or halidohydrolase. Agric. Biol. Chem. 50: 453–460Google Scholar
  89. Yokota T, Omori T & Kodama T (1987) Purification and properties of haloalkane dehalogenase fromCorynebacterium species strain m15-3. J. Bacteriol. 169: 4049–4054Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • J. Howard Slater
    • 1
  • Alan T. Bull
    • 2
  • David J. Hardman
    • 3
  1. 1.Molecular Ecology Research Unit, School of Pure and Applied BiologyUniversity of Wales, CardiffCardiffWales, UK
  2. 2.Research School of Biosciences, Biological LaboratoryUniversity of Kent at CanterburyCanterburyEngland, UK
  3. 3.Carbury Herne LtdResearch and Development CentreCanterburyEngland, UK

Personalised recommendations