Probability Theory and Related Fields

, Volume 71, Issue 4, pp 553–579 | Cite as

A multidimensional process involving local time

  • A. S. Sznitman
  • S. R. S. Varadhan
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    Aldous, D.: Stopping times and tightness. Ann. Probab.6, 335–340 (1978)Google Scholar
  2. 2.
    Anulova, S.V.: Diffusion processes with singular characteristics. Stochastic Differential Systems, Proc. I.F.I.P.-W.G. Conf. Vilnius, 264–269, Lecture notes in Control25. Berlin Heidelberg New York: Springer 1978Google Scholar
  3. 3.
    Aronson, D.G.: Bounds for the fundamental solution of a parabolic equation. Bull. Am. Math. Soc.73, 890–896 (1967)Google Scholar
  4. 4.
    Aronson, D.G., Serrin, J.: Local behaviour of solutions of quasilinear parabolic equations. Arch. Rational Mech. Anal.25, 81–122 (1967)Google Scholar
  5. 5.
    Billingsley, P.: Convergence of probability measures. New York: Wiley 1968Google Scholar
  6. 6.
    Carillo-Menendez, S.: Processus de Markov Associé à une forme de Dirichlet non Symétrique. Z. Wahrscheinlichkeitstheorie Verw. Geb.33, 139–154 (1975)Google Scholar
  7. 7.
    Dellacherie, C., Meyer, P.A.: Probabilités et Potentiels, cha. I a IV. Paris: Hermann 1975Google Scholar
  8. 8.
    El-Karoui, N., Chaleyat-Maurel, M.: Un Problème de réflexion et ses applications au temps local et aux équations différentielles stochastiques, surR, cas continu. Temps locaux. Astérisque 52–54, (1978)Google Scholar
  9. 9.
    Friedman, A.: Partial differential equations of parabolic type. London: Prentice Hall 1964Google Scholar
  10. 10.
    Gimman, I.I., Skorohod, A.V.: Stochastic differential equations. Berlin: Heidelberg New York: Springer 1972Google Scholar
  11. 11.
    Gutkin, E., Kac, M.: Propagation of chaos and the Burger's equations SIAM J. Appl. Math.,43, 972–980 (1983)Google Scholar
  12. 12.
    Harrison, J.M., Shepp, L.A.: On skew Brownian motion. Ann. Probab.9, 309–313 (1981)Google Scholar
  13. 13.
    Ikeda, N., Watanabe, S.: Stochastic differential equations and diffusion processes. Amsterdam Kodansha Tokyo: North Holland 1981Google Scholar
  14. 14.
    Joffe, A., Métivier, M.: On tightness inD(R +,H), and a few applications to limits of branching processes. Sep. 1981, CRMA-1054, Université de MontrealGoogle Scholar
  15. 15.
    Kotani, S., Osada, H.: Propagation of chaos for Burgers' equation. J. Math. Soc. Japan37, 275–294 (1985)Google Scholar
  16. 16.
    Kunita, H.: Stochastic flows. École d'été de probabilités deS T flour (1982). Lecture notes in Math.1097. Berlin Heidelberg New York Tokyo: Springer 1985Google Scholar
  17. 17.
    Ladyzhenskaya, O.A., Solonnikov, V.A., Uralceva, N.N.: Linear and quasilinear equations of parabolic type. Providence, R.I.: Amer. Math. Soc. 1968Google Scholar
  18. 18.
    Le Gall, J.F.: Doctorat de 3eme cycle, Paris VI (1982)Google Scholar
  19. 19.
    Le Jan, Y.: Mesures associées à une forme de Dirichlet et applications. Bull. Soc. Math. France,106, 61–112 (1978)Google Scholar
  20. 20.
    McKean, H.P.: Propagation of chaos for a class of nonlinear parabolic equations. Lecture series in Differential Equations, Vol. 7, 41–57. Catholic Univ., Washington, D.C., (1967)Google Scholar
  21. 21.
    Moser, J.: A Harnack inequality for parabolic differential equations. Comm. Pure Appl. Math.17, 101–134 (1964), and20, 231–236 (1967)Google Scholar
  22. 22.
    Nash, J.: Continuity of solutions of parabolic and elliptic equations. Am. J. Math.80, 931–954 (1958)Google Scholar
  23. 23.
    Neveu, J.: Bases mathématiques des probabilités. Paris: Masson 1970Google Scholar
  24. 24.
    Portenko, N.I.: On stochastic differential equations with generalized trend vectors, II Vilnius Conf., abstracts of communications, Vol. 1, Vilnius (1977)Google Scholar
  25. 25.
    Revuz, D.: Markov chains. Amsterdam: North Holland 1975Google Scholar
  26. 26.
    Stroock, D.W., Varadhan, S.R.S.: Multidimensional diffusion processes. Berlin Heidelberg New York: Springer 1979Google Scholar
  27. 27.
    Sznitman, A.S.: A propagation of chaos result for Burgers' equation. Probab. Th. Rel. Fields71, 581–613 (1986)Google Scholar
  28. 28.
    Tanaka, H.: Stochastic differential equations with reflecting boundary conditions in convex regions. Hiroshima Math. J.9, 163–177 (1979)Google Scholar
  29. 29.
    Varadhan, S.R.S., Williams, R.J.: Brownian motion in a wedge with oblique reflection. Comm. Pure Appl. Math.38, 405–443 (1985)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • A. S. Sznitman
    • 1
  • S. R. S. Varadhan
    • 2
  1. 1.Laboratoire de ProbabilitésUniversité Paris VI Associé C.N.R.S. no 224ParisFrance
  2. 2.Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA

Personalised recommendations